精英家教网 > 高中数学 > 题目详情
10.设Sn为数列{an}的前n项和,若Sn=8an-1,则$\frac{{a}_{5}}{{a}_{3}}$=$\frac{64}{49}$.

分析 利用递推关系、等比数列的性质即可得出.

解答 解:∵Sn=8an-1,
∴当n=1时,a1=8a1-1,解得a1=$\frac{1}{7}$.
当n≥2时,an=Sn-Sn-1=(8an-1)-(8an-1-1),化为$\frac{{a}_{n}}{{a}_{n-1}}=\frac{8}{7}$.
∴$\frac{{a}_{5}}{{a}_{3}}$=$(\frac{8}{7})^{2}$=$\frac{64}{49}$.
故答案为:$\frac{64}{49}$.

点评 本题考查了递推关系的应用、等比数列的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.设三角形的三条边的长度分别是x,y,$\sqrt{{x}^{2}-xy+{y}^{2}}$,则最大边与最小边的夹角θ=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数$f(x)=ln(x+1)-\frac{2}{x}$的零点在区间(k,k+1)(k∈N)上,则k的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.△ABC中,∠A=60°,M为边BC的中点,AM=$\sqrt{3}$,则2AB+AC的取值范围是(2$\sqrt{3}$,4$\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,正方形ABCD的边长为1,分别以定点A、B、C、D为圆心,以1为半径作弧,求图中阴影部分的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=$\frac{lnx+(x-b)^{2}}{x}$(b∈R).若存在x∈[$\frac{1}{2}$,2],使得f(x)+xf′(x)>0,则实数 b的取值范围是(  )
A.(-∞,$\frac{3}{2}$)B.(-∞,$\frac{9}{4}$)C.(-∞,3)D.(-∞,$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知cos(π-θ)=3m(m<0),且cos($\frac{π}{2}$+θ)(1-2cos2$\frac{θ}{2}$)<0,则θ是(  )
A.第一象限角B.第二象限角C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求直线l:2x+y+1=0关于M(1,0)对称的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设数列{an}满足:a1=2,an+1=1-$\frac{1}{{a}_{n}}$,记数列{an}的前n项之积为Tn,则T2015的值为(  )
A.-$\frac{1}{2}$B.-1C.$\frac{1}{2}$D.2

查看答案和解析>>

同步练习册答案