精英家教网 > 高中数学 > 题目详情
19.如图所示是某一几何体的三视图,则这个几何体是(  )
A.圆柱体B.圆锥体C.正方体D.球体

分析 直接利用三视图 几何体的形状即可.

解答 解:由正视图与侧视图可知,几何体是柱体,由俯视图可知,三视图是圆柱体.
故选:A.

点评 本题考查三视图复原几何体的判断,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.函数y=1+logax(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny-2=0上,其中mn>0,则$\frac{1}{m}+\frac{3}{n}$的最小
值为(  )
A.2+$\sqrt{3}$B.2-$\sqrt{3}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.计算:
(1)${({\frac{13}{6}})^0}+{({\frac{1}{2}})^{-2}}-{({\frac{25}{4}})^{\frac{1}{2}}}+{({0.001})^{\frac{1}{3}}}$
(2)$lg4+lg25-{5^{{{log}_5}3}}+({log_2}9).({log_3}4)$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+5x+4(x≤0)}\\{2|x-2|(x>0)}\end{array}\right.$,若函数y=f(x)-a|x|恰有3个零点,则a的取值范围是a=0或a≥2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{3}x(x>0)}\\{{2}^{-x}+1(x≤0)}\end{array}\right.$,则f(f(1))+f(log2$\frac{1}{3}$)的值是(  )
A.6B.5C.$\frac{7}{2}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,在四边形ABCD中,∠D=2∠B,且AD=2,CD=9,cosB=$\frac{1}{3}$.
(1)求△ACD的面积;
(2)若sin∠BAC=$\frac{2}{3}$sinB,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在锐角△ABC中,角A,B,C的对边分别为a,b,c,若b=2,B=2A,则c的取值范围是($\sqrt{2}$,$\frac{4\sqrt{3}}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.李明在玩具厂工作,做4只小猫和7只小狗用去3h 42min,做5只小猫和6只小狗用去3h 37min,平均做1只小猫与1只小狗各用多少时间?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lg(-x2+4x-3)的定义域为M.
(1)求f(x)的定义域M;
(2)求当x∈M时,求函数g(x)=4x-a•2x+1(a为常数,且a∈R)的值域.

查看答案和解析>>

同步练习册答案