精英家教网 > 高中数学 > 题目详情
3.用秦九韶算法求多项式f(x)=x6-5x5+6x4-3x3+1.8x2+0.35x+2,在x=-1的值时,v2的值是12.

分析 首先把一个n次多项式f(x)写成(…((a[n]x+a[n-1])x+a[n-2])x+…+a[1])x+a[0]的形式,然后化简,求n次多项式f(x)的值就转化为求n个一次多项式的值,求出V3的值.

解答 解:∵f(x)=x6-5x5+6x4-3x3+1.8x2+0.35x+2=((x-5)x+6)x-3)x+1.8)x+0.35)x+2,
∴v0=a6=1,
v1=v0x+a5=1×(-1)-5=-6,
v2=v1x+a4=-6×(-1)+6=12,
∴v2的值为12,
故答案为12.

点评 本题考查排序问题与算法的多样性,通过数学上的算法,写成程序,然后求解,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.对于曲线C:f(x,y)=0,若存在非负实数M和m,使得曲线C上任意一点P(x,y),m≤|OP|≤M恒成立(其中O为坐标原点),则称曲线C为有界曲线,且称M的最小值M0为曲线C的外确界,m的最大值m0为曲线C的内确界.
(1)写出曲线x+y=1(0<x<4)的外确界M0与内确界m0
(2)曲线y2=4x与曲线(x-1)2+y2=4是否为有界曲线?若是,求出其外确界与内确界;若不是,请说明理由;
(3)已知曲线C上任意一点P(x,y)到定点F1(-1,0),F2(1,0)的距离之积为常数a(a>0),求曲线C的外确界与内确界.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若a>b,ab=1,则$M=\frac{{{a^2}+{b^2}}}{a-b}$的取值范围是[2$\sqrt{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=Asin({ωx+φ})({A>0\;,\;\;ω>0\;,\;\;|φ|<\frac{π}{2}})$在一个周期内的图象如图所示,图象过点$({0\;,\;\;\sqrt{3}})$,A为图象的最高点,B,C为图象与x轴的交点,且△ABC为高为$2\sqrt{3}$的正三角形.
(1)求A,ω,φ的值;
(2)当$x∈[{-\frac{2}{3}\;,\;\;\frac{4}{3}}]$时,求函数f(x)的值域;
(3)将y=f(x)的图象所在点向左平行移动θ(θ>0)的单位长度,得到y=g(x)的图象.若y=g(x)的图象的一个对称中心为$({\frac{2}{3}\;,\;\;0})$,求θ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数$f(n)=\left\{\begin{array}{l}n-3({n≥10})\;,\;\;\\ f[{f({n+5})}]({n<10})\;,\;\;\end{array}\right.$其中n∈N,则f(9)等于(  )
A.4B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知对任意x1、x2∈(0,+∞)且x1<x2,幂函数$f(x)={x^{-\frac{p^2}{2}+p+\frac{3}{2}}}$(p∈Z),满足f(x1)<f(x2),并且对任意的x∈R,f(x)-f(-x)=0.
(1)求p的值,并写出函数f(x)的解析式;
(2)对于(1)中求得的函数f(x),设g(x)=-qf(x)+(2q-1)x+1,问:是否存在负实数q,使得g(x)在(-∞,-4)上是减函数,且在[-4,+∞)上是增函数?若存在,求出q的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知数列{an}中,a1=1,a2=6,an+2=an+1-an,则a2016=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数$f(x)=sinx+\sqrt{3}•cosx$,若存在锐角θ满足f(θ)=2,则θ=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知集合P=(-∞,0]∪(3,+∞),Q={0,1,2,3},则(∁RP)∩Q=(  )
A.{0,1}B.{0,1,2}C.{1,2,3}D.{x|0≤x<3}

查看答案和解析>>

同步练习册答案