精英家教网 > 高中数学 > 题目详情
2.用五点作图法作出函数y=cos(2x-$\frac{π}{3}$),x∈[0,π]的图象,并写出其单调递增区间.

分析 通过列表,描点,连线,即可画出函数的图象,由2kπ-π≤2x-$\frac{π}{3}$≤2kπ(k∈Z)即可求得y=cos(2x-$\frac{π}{3}$)的单调递增区间.

解答 解:列表:

x$\frac{π}{6}$$\frac{5π}{12}$$\frac{2π}{3}$$\frac{11π}{12}$$\frac{7π}{6}$
2x-$\frac{π}{3}$0$\frac{π}{2}$π$\frac{3π}{2}$
y=cos(2x-$\frac{π}{3}$)10-101
作图如下:

依题意,2kπ-π≤2x-$\frac{π}{3}$≤2kπ(k∈Z),
∴kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$(k∈Z),
∴y=cos(2x-$\frac{π}{3}$)的单调递增区间为[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z).

点评 本题考查复合三角函数的单调性,着重考查余弦函数的性质,考查三角函数的化简,画图,注意五点法作图的基本方法,这是易错点,高考常考题型.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.在△ABC中,角A,B,C所对的边分别为a,b,c,若向量$\overrightarrow{m}$=(-cosB,sinC),$\overrightarrow{n}$=(-cosC,-sinB),且$\overrightarrow{m}$*$\overrightarrow{n}$=$\frac{\sqrt{3}}{2}$.
(1)求角A的大小;
(2)若b+c=5,△ABC的面积S=1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求下列抛物线的焦点坐标和准线方程:
(1)x2=2y;'
(2)4x2+3y=0;
(3)2y2+x=0;
(4)y2-6x=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,则向量$\overrightarrow{BC}$为(  )
A.$\overrightarrow{a}$$+\overrightarrow{b}$B.$\overrightarrow{a}$$-\overrightarrow{b}$C.$\overrightarrow{b}$$-\overrightarrow{a}$D.-$\overrightarrow{b}$$-\overrightarrow{a}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.一种卫星接收天线的轴截面如图所示,卫星波束呈近似平行状态射入轴截面为抛物线的接收天线,经反射聚集到焦点处,已知接收天线的口径(直径)为4.8m,深度为0.5m.
(1)试建立适当的坐标系,求抛物线的标准方程和焦点坐标.
(2)为了增强卫星波束的接收,拟将接收天线的口径增大为5.2m,求此时星波束反射聚集点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设一电路中电流i关于时间t的变化率为$\frac{di}{dt}$=4t-0.6t2,若t=0,i=2A,求电流i关于时间t的函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知向量$\overrightarrow{m}$=($\sqrt{3}$x,x2),$\overrightarrow{n}$=($\sqrt{3}$,-$\frac{1}{2}$),当x∈[0,4]时,函数f(x)=$\overrightarrow{m}$•$\overrightarrow{n}$的值域为[0,$\frac{9}{2}$]..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2-a1nx和g(x)=x-a$\sqrt{x}$在x=1处的切线平行.
(1)试求函数f(x)和g(x)的单调增区间;
(2)设1<b<3,求证:lnb+$\sqrt{b}$<2b.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.一个三角形的外接圆半径R=$\frac{a\sqrt{bc}}{b+c}$,则该三角形的最大内角为$\frac{π}{2}$.

查看答案和解析>>

同步练习册答案