精英家教网 > 高中数学 > 题目详情

【题目】f(x)=(m﹣1)x2+2mx+3为偶函数,则f(x)在区间(2,5)上是(
A.减函数
B.增函数
C.有增有减
D.增减性不确定

【答案】A
【解析】解:f(x)=(m﹣1)x2+2mx+3为偶函数, 所以m=0,
所以f(x)=﹣x2+3,开口向下,
f(x)在区间(2,5)上是减函数.
故选:A.
【考点精析】利用函数奇偶性的性质和二次函数的性质对题目进行判断即可得到答案,需要熟知在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇;当时,抛物线开口向上,函数在上递减,在上递增;当时,抛物线开口向下,函数在上递增,在上递减.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“开门大吉”是某电视台推出的游戏节目,选手面对1号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金,在一次场外调查中,发现参赛选手多数分为两个年龄段: (单位:岁),其猜对歌曲名称与否的人数如图所示.

(Ⅰ)写出列联表;判断是否有的把握认为猜对歌曲名称是否与年龄有关;说明你的理由;(如表的临界值表供参考)

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

(Ⅱ)现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取3名幸运选手,求3名幸运选手中恰好有一人在岁之间的概率. 

(参考公式: ,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为了对研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:

单价

9

9.2

9.4

9.6

9.8

10

销量

100

94

93

90

85

78

(1)求回归直线方程

(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是5元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润销售收入成本)(附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:),

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在某单位的职工食堂中,食堂每天以元/个的价格从面包店购进面包,然后以元/个的价格出售.如果当天卖不完,剩下的面包以元/个的价格卖给饲料加工厂.根据以往统计资料,得到食堂每天面包需求量的频率分布直方图如下图所示.食堂某天购进了90个面包,以(单位:个, )表示面包的需求量, (单位:元)表示利润.

(Ⅰ)求关于的函数解析式;

(Ⅱ)根据直方图估计利润不少于元的概率;

III)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,并以需求量落入该区间的频率作为需求量取该区间中间值的概率(例如:若需求量,则取,且的概率等于需求量落入的频率),求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,过椭圆右焦点的直线交椭圆两点, 的中点,且直线的斜率为

求椭圆的方程;

设另一直线与椭圆交于两点,原点到直线的距离为,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)是R上的偶函数,且当x>0时,函数的解析式为
(1)用定义证明f(x)在(0,+∞)上是减函数;
(2)求当x<0时,函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知多面体如图所示.其中为矩形, 为等腰直角三角形, ,四边形为梯形,且 .

(1)若为线段的中点,求证: 平面.

(2)线段上是否存在一点,使得直线与平面所成角的余弦值等于?若存在,请指出点的位置;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中, 平面 的中点, 为棱上一点.

(Ⅰ)当为何值时,有平面

(Ⅱ)在(Ⅰ)的条件下,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以直角坐标系的原点为极点, 轴的正半轴为极轴,且两个坐标系取相等的长度单位,已知直线的参数方程为参数)曲线的极坐标方程为.

(1)求直线的普通方程和曲线的直角坐标方程;

(2)设直线与曲线相交于两点,当变化时,求的最小值.

查看答案和解析>>

同步练习册答案