精英家教网 > 高中数学 > 题目详情
设椭圆
x2
m+1
+y2=1
的两个焦点是F1(-c,0),F2(c,0)(c>0).
(1)设E是直线y=x+2与椭圆的一个公共点,求使得|EF1|+|EF2|取最小值时椭圆的方程;
(2)已知N(0,-1)设斜率为k(k≠0)的直线l与条件(1)下的椭圆交于不同的两点A,B,点Q满足
AQ
=
QB
,且
NQ
AB
=0
,求直线l在y轴上截距的取值范围.
分析:(1)由题意知m>0.由
y=x+2
x2
m+1
+y2=1
,得(m+2)x2+4(m+1)x+3(m+1)=0.由△≥0,得m≥2,或m≤-1(舍去).此时|EF1|+|EF2|=2
m+1
≥2
3
.由此能求出椭圆方程.
(2)设直线l的方程为y=kx+t.由方程组
x2+3y2=3
y=kx+t
,得(1+3k2)x2+6ktx+3t2-3=0.由△>0,知t2<1+3k2,设A(x1,y1),B(x2,y2),则x1+x2=-
6kt
1+3k2
.由
AQ
=
QB
,得Q为线段AB的中点,由此能求出截距t的取值范围.
解答:解:(1)由题意,知m+1>1,即m>0.
y=x+2
x2
m+1
+y2=1

得(m+2)x2+4(m+1)x+3(m+1)=0.
由△=16(m+1)2-12(m+2)(m+1)=4(m+1)(m-2)≥0,
解得m≥2,或m≤-1(舍去)∴m≥2(3分)
此时|EF1|+|EF2|=2
m+1
≥2
3

当且仅当m=2时,|EF1|+|EF2|.取得最小值2
3

此时椭圆方程为
x2
3
+y2=1

(2)设直线l的方程为y=kx+t.
由方程组
x2+3y2=3
y=kx+t

消去y得(1+3k2)x2+6ktx+3t2-3=0.∵直线l与椭圆交于不同两点A、B∴△=(6kt)2-4(1+3k2)(3t2-3)>0,
即t2<1+3k2
设A(x1,y1),B(x2,y2),
x1+x2=-
6kt
1+3k2

AQ
=
QB
,得Q为线段AB的中点,
xQ=
x1+x2
2
=-
3kt
1+3k2
yQ=kxQ+t=
t
1+3k2
.∵
NQ
AB
=0

∴kAB•kQN=-1,[来源:学,科,即
t
1+3k2
+1
-
3kt
1+3k2
•k=-1

化简得1+3k2=2t.代入①得t2<2t,解得0<t<2.
又由2t=1+3k2>1,得t>
1
2

所以,直线l在y轴上的截距t的取值范围是(
1
2
,2)
点评:本题考查椭圆方程的求法和截距t的取值范围.解题时要认真审题,利用椭圆性质注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理)设椭圆
x2
m+1
+y2=1
的两个焦点是F1(-c,0)、F2(c,0)(c>0),且椭圆上存在点M,使
MF1
MF2
=0

(1)求实数m的取值范围;
(2)若直线l:y=x+2与椭圆存在一个公共点E,使得|EF1|+|EF2|取得最小值,求此最小值及此时椭圆的方程;
(3)是否存在斜率为k(k≠0)的直线l,与条件(Ⅱ)下的椭圆交于A、B两点,使得经过AB的中点Q及N(0,-1)的直线NQ满足
NQ
AB
=0
?若存在,求出k的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:黄冈模拟 题型:解答题

(理)设椭圆
x2
m+1
+y2=1
的两个焦点是F1(-c,0)、F2(c,0)(c>0),且椭圆上存在点M,使
MF1
MF2
=0

(1)求实数m的取值范围;
(2)若直线l:y=x+2与椭圆存在一个公共点E,使得|EF1|+|EF2|取得最小值,求此最小值及此时椭圆的方程;
(3)是否存在斜率为k(k≠0)的直线l,与条件(Ⅱ)下的椭圆交于A、B两点,使得经过AB的中点Q及N(0,-1)的直线NQ满足
NQ
AB
=0
?若存在,求出k的取值范围;若不存在,说明理由.

查看答案和解析>>

同步练习册答案