精英家教网 > 高中数学 > 题目详情
过点与圆相交的所有直线中,被圆截得的弦最长的直线方程是(   )
A.B.C.D.
C

试题分析:根据题意,由于过点与圆相交的所有直线中,被圆截得的弦最长的直线就是圆心与点P的连线的直线,即斜率为-1,那么根据点斜式方程可知,方程为,故可知结论为C.
点评:主要是考查了直线与圆的位置关系的运用,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长之比为3:1;③圆心到直线的距离为,求该圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

与圆都相切的直线有(    )
A.1条B.2条C.3条D.4条

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知直线,若以点为圆心的圆与直线相切于点,且轴上,则该圆的方程为(    )
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆关于直线对称,圆心在第二象限,半径为.
(1)求圆的方程;
(2)是否存在直线与圆相切,且在轴、轴上的截距相等?若存在,求直线的方程;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

与圆相切的直线与轴,轴的正半轴交于A、B且,则三角形AOB面积的最小值为          

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:的离心率为,其中左焦点. 
(Ⅰ)求出椭圆C的方程;
(Ⅱ) 若直线与曲线C交于不同的A、B两点,且线段AB的中点M在圆上,求m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知圆,直线过定点.
(1)求圆心的坐标和圆的半径
(2)若与圆C相切,求的方程;
(3)若与圆C相交于P,Q两点,求三角形面积的最大值,并求此时的直线方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在直角坐标系中,直线的参数方程为t为参数);在极坐标系(与直
角坐标系取相同的长度单位,且以原点为极点,以的正半轴为极轴)中,圆的极坐标方
程为,则此直线与此圆的位置关系是             

查看答案和解析>>

同步练习册答案