ÒÑÖªÃݺ¯Êýy=xm2-2m-3(m¡ÊN+)µÄͼÏóÓëxÖᣬyÖáÎÞ½»µãÇÒ¹ØÓÚÔ­µã¶Ô³Æ£¬ÓÖÓк¯Êýf£¨x£©=x2-alnx+m-2ÔÚ£¨1£¬2]ÉÏÊÇÔöº¯Êý£¬g£¨x£©=x-a
x
ÔÚ£¨0£¬1£©ÉÏΪ¼õº¯Êý£®
¢ÙÇóaµÄÖµ£»
¢ÚÈô
1
p(x)
=2f¡ä(x)-2x+
5
x
+1
£¬ÊýÁÐ{an}Âú×ãa1=1£¬an+1=p£¨an£©£¬£¨n¡ÊN+£©£¬ÊýÁÐ{bn}£¬Âú×ãbn=
1
2
anan+13n
£¬sn=b1+b2+b3+¡­+bn£¬ÇóÊýÁÐ{an}µÄͨÏʽanºÍsn£®
¢ÛÉèh(x)=f¡ä(x)-g(x)-2
x
+
3
x
£¬ÊԱȽÏ[h£¨x£©]n+2Óëh£¨xn£©+2nµÄ´óС£¨n¡ÊN+£©£¬²¢ËµÃ÷ÀíÓÉ£®
·ÖÎö£º¢ÙÓÉÃݺ¯ÊýµÄ¶¨ÒåºÍÒÑÖªÌõ¼þÇóµÃÕýÕûÊým=2£®¸ù¾Ýf¡ä£¨x£©=2x-
a
x
¡Ý0¶ÔÓÚÇø¼ä£¨1£¬2]ºã³ÉÁ¢£¬ÇóµÃa¡Ü2£®ÔÙ¸ù¾Ýg¡ä£¨x£©=1-
a
2
x
¡Ü0¶ÔÓÚÇø¼ä£¨0£¬1£©ºã³ÉÁ¢£¬ÇóµÃ a¡Ý2£®×ÛÉÏ£¬¿ÉµÃaµÄÖµ£®
¢ÚÓÉp£¨x£©=
x
x+3
£¬¿ÉµÃ
1
an+1
+
1
2
=3£¨
1
an
+
1
2
£©£¬¹ÊÊýÁÐ{
1
an
+
1
2
}Êǹ«±ÈΪ3µÄµÈ±ÈÊýÁУ¬ÇÒÊ×ÏîΪ
3
2
£®¸ù¾ÝµÈ±ÈÊýÁеÄͨÏʽÇóµÃ an=
2
3n-1
£®ÔÙÓÉ bn=
1
2
anan+13n
=
1
3n-1
-
1
3n+1-1
£¬ÓÃÁÑÏî·¨ÇóµÃSn=b1+b2+b3+¡­+bnµÄÖµ£®
¢Û¸ù¾Ýh£¨x£©=x+
1
x
£¬µ±n¡Ý2ʱ£¬[h£¨x£©]n-h£¨xn£©=(x+
1
x
)
n
-£¨xn+
1
xn
£© ÀûÓöþÏîʽ¶¨Àí»¯Îª=
1
2
[
C
1
n
£¨xn-2+
1
xn-2
£©+
C
2
n
£¨xn-4+
1
xn-4
£©+¡­+
C
n-1
n
£¨x2-n+
1
x2-n
£©]¡Ý
C
1
n
+
C
2
n
+
C
3
n
+¡­+
C
n-1
n
=2n-2£¬¼´¿É±È½Ï±È½Ï[h£¨x£©]n+2¡Ýh£¨xn£©+2nµÄ´óС£¨n¡ÊN+£©£®
½â´ð£º½â£º¢ÙÓÉÃݺ¯ÊýµÄ¶¨ÒåºÍÒÑÖªÌõ¼þ¿ÉµÃm2-2m-3Ϊ¸ºÆæÊý£¬¹ÊÓÐÕýÕûÊým=2£®
ÓÉÓÚº¯Êýf£¨x£©=x2-alnx+m-2ÔÚ£¨1£¬2]ÉÏÊÇÔöº¯Êý£¬¹Êf¡ä£¨x£©=2x-
a
x
¡Ý0¶ÔÓÚÇø¼ä£¨1£¬2]ºã³ÉÁ¢£¬¡àa¡Ü2£®
ÓÉg£¨x£©=x-a
x
ÔÚ£¨0£¬1£©ÉÏΪ¼õº¯Êý£¬¿ÉµÃg¡ä£¨x£©=1-
a
2
x
¡Ü0¶ÔÓÚÇø¼ä£¨0£¬1£©ºã³ÉÁ¢£¬¡àa¡Ý2£®
×ÛÉÏ£¬¿ÉµÃ a=2£®
¢Ú¡ßp£¨x£©=
x
x+3
£¬¡àan+1=
an
an+3
£¬¡à
1
an+1
+
1
2
=3£¨
1
an
+
1
2
£©£¬¹ÊÊýÁÐ{
1
an
+
1
2
}Êǹ«±ÈΪ3µÄµÈ±ÈÊýÁУ¬ÇÒÊ×ÏîΪ
3
2
£®
¡àan+
1
2
=
3
2
•3n-1£¬¡àan=
2
3n-1
£®
ÔÙÓÉ bn=
1
2
anan+13n
=
2¡Á3n
(3n-1)(3n+1-1)
=
1
3n-1
-
1
3n+1-1
£¬¿ÉµÃ
Sn=b1+b2+b3+¡­+bn£¬=£¨
1
3-1
-
1
32-1
£©+£¨
1
32-1
-
1
33-1
£©+£¨
1
33-1
-
1
34-1
£©+¡­+£¨
1
3n-1
-
1
3n+1-1
£©=
1
2
-
1
3n+1-1
£®
¢ÛÉèh(x)=f¡ä(x)-g(x)-2
x
+
3
x
=£¨x2-2lnx£©¡ä-x+2
x
-2
x
+
3
x
=x+
1
x
£¬
µ±n¡Ý2ʱ£¬[h£¨x£©]n-h£¨xn£©=(x+
1
x
)
n
-£¨xn+
1
xn
£©=
C
0
n
•xn-0•(
1
x
)
0
+
C
1
n
•xn-1•(
1
x
)
1
+
C
2
n
•xn-2•(
1
x
)
2
+¡­+
C
n
n
•xn-n•(
1
x
)
n
-£¨xn+
1
xn
£©
=
C
1
n
•xn-2
+
C
2
n
•xn-4
+
C
3
n
•xn-6
+¡­+
C
n-1
n
•x2-n
=
1
2
[
C
1
n
£¨xn-2+
1
xn-2
£©+
C
2
n
£¨xn-4+
1
xn-4
£©+¡­+
C
n-1
n
£¨x2-n+
1
x2-n
£©]
¡Ý
C
1
n
+
C
2
n
+
C
3
n
+¡­+
C
n-1
n
=2n-2£¬
ÊԱȽÏ[h£¨x£©]n+2¡Ýh£¨xn£©+2nµÄ´óС£¨n¡ÊN+£©£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²é¶þÏîʽ¶¨ÀíµÄÓ¦Óã¬ÓÃÁÑÏî·¨½øÐÐÊýÁÐÇóºÍ£¬Çóº¯ÊýµÄµ¼Êý£¬±È½ÏÁ½¸öʽ×ӵĴóСµÄ·½·¨£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÃݺ¯Êýy=xm2-2m-3(m¡ÊN*)µÄͼÏó¹ØÓÚyÖá¶Ô³Æ£¬ÇÒÔÚ£¨0£¬+¡Þ£©ÉÏÊǼõº¯Êý£®
£¨1£©ÇómµÄÖµ£»
£¨2£©ÇóÂú×ã(a+1)-
m
3
£¼(3-2a)-
m
3
µÄaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÃݺ¯Êýy=xm2-2m-3(m¡ÊN*)µÄͼÏó¹ØÓÚyÖá¶Ô³Æ£¬ÇÒÔÚ£¨0£¬+¡Þ£©ÉÏÊǼõº¯Êý£¬ÇóÂú×ã(a+1)
m
3
£¼(3-2a)
m
3
µÄʵÊýaµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÃݺ¯Êýy=xm2-m-6(m¡ÊZ)µÄͼÏóÓëxÖáÎÞ¹«¹²µã£¬ÔòmµÄÖµµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÃݺ¯Êýy=xm2-2m-3(m¡ÊZ)µÄͼÏóÓëxÖá¡¢yÖᶼÎÞ¹«¹²µã£¬ÇÒ¹ØÓÚyÖá¶Ô³Æ£¬Ôòm=
-1¡¢1¡¢3
-1¡¢1¡¢3
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÃݺ¯Êýy=xm2-2m-3(m¡ÊN*)µÄͼÏó¹ØÓÚyÖá¶Ô³Æ£¬ÇÒÔÚ£¨0£¬+¡Þ£©ÉÏÊǼõº¯Êý£¬ÇóʵÊýmµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸