精英家教网 > 高中数学 > 题目详情
如图,若边长为4和3与边长为4和2的两个矩形所在平面互相垂直,则cosα:cosβ=
 

考点:平面与平面垂直的性质
专题:计算题,空间位置关系与距离
分析:由题意,两个矩形的对角线长分别为5,
16+4
=2
5
,利用余弦函数,即可求出cosα:cosβ.
解答: 解:由题意,两个矩形的对角线长分别为5,
16+4
=2
5

∴cosα=
5
25+4
=
5
29
,cosβ=
2
5
29

∴cosα:cosβ=
5
2

故答案为:
5
2
点评:本题考查平面与平面垂直的性质,考查学生的计算能力,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)对于任意的x、y∈R,都有f(x)•f(y)-f(xy)=3x+3y+6,则f(2008)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C:x2+y2-4x-14y+45=0及点Q(6,3).
(1)若M(x,y)为圆C上任一点,求K=
y-3
x-6
的最大值和最小值;
(2)已知点N(-6,3),直线kx-y-6k+3=0与圆C交于点A、B.当k为何值时
NA
NB
取到最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD是正方形,PD∥MA,MA⊥AD,PM⊥平面CDM,MA=AD=
1
2
PD=1.
(Ⅰ)求证:平面ABCD⊥平面AMPD;
(Ⅱ)求三棱锥A-CMP的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

某单位设计一个展览沙盘,现欲在沙盘平面内,铺设一个对角线在L上的四边形电气线路,如图所示.为充分利用现有材料,边BC,CD用一根5米长的材料弯折而成,边BA,AD用一根9米长的材料弯折而成,使A+C=180°,且AB=BC.设AB=x米,cos A=f(x).
(1)求f(x)的解析式,并指出x的取值范围;
(2)求y=
sinA
AB
的最大值,并指出相应的x值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=kx+2与椭圆2x2+3y2=6有两个公共点,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c,若a•cosA=bcosB,则△ABC的形状为(  )
A、等腰三角形
B、直角三角形
C、等腰三角形或直角三角形
D、等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程4x2+ky2=1的曲线是焦点在y轴上的椭圆,则实数k的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图是求函数y=f(x)值的一个程序.请写出这个函数y=f(x)的表达式.

查看答案和解析>>

同步练习册答案