精英家教网 > 高中数学 > 题目详情

【题目】已知双曲线 的两条渐近线与抛物线的准线分别交于两点.若双曲线的离心率为的面积为为坐标原点,则抛物线的焦点坐标为 ( )

A. B. C. D.

【答案】B

【解析】

求出双曲线双曲线a>0,b>0)的渐近线方程与抛物线y2=2pxp>0)的准线方程,进而求出AB两点的坐标,再由双曲线的离心率为2,△AOB的面积为,列出方程,由此方程求出p的值.

∵双曲线a>0,b>0),

∴双曲线的渐近线方程是y=±x

又抛物线y2=2pxp>0)的准线方程是x

AB两点的纵坐标分别是y=±

又由双曲线的离心率为2,所以2,则

AB两点的纵坐标分别是y=±,即=,

又△AOB的面积为,且轴,

,得p=2.

抛物线的焦点坐标为:(1,0)

故选:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设等差数列的前项和为,且是常数,),.

(1)求的值及数列的通项公式;

(2)设,数列的前项和为,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,其中 表示中所有不同值的个数.

)设集合 ,分别求

)若集合,求证:

是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax+b,x[-1,1],a,bR,且是常数.

(1)a是从-2,-1,0,1,2五个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求函数y=f(x)为奇函数的概率;

(2)a是从区间[-2,2]中任取的一个数,b是从区间[0,2]中任取的一个数,求函数y=f(x)有零点的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,离心率为,过的直线与椭圆交于两点,且的周长为8.

(1)求椭圆的方程;

(2)直线过点,且与椭圆交于两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】()bc分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程x2bxc=0实根的个数(重根按一个计).

(1)求方程x2bxc=0有实根的概率.

(2)ξ的分布列和数学期望.

(3)求在先后两次出现的点数中有5的条件下,方程x2bxc=0有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2021年我省将实施新高考,新高考“依据统一高考成绩、高中学业水平考试成绩,参考高中学生综合素质评价信息”进行人才选拔。我校2018级高一年级一个学习兴趣小组进行社会实践活动,决定对某商场销售的商品A进行市场销售量调研,通过对该商品一个阶段的调研得知,发现该商品每日的销售量(单位:百件)与销售价格(元/件)近似满足关系式,其中为常数已知销售价格为3元/件时,每日可售出该商品10百件

(1)求函数的解析式;

(2)若该商品A的成本为2元/件,根据调研结果请你试确定该商品销售价格的值,使该商场每日销售该商品所获得的利润(单位:百元)最大。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】光对物体的照度与光的强度成正比,比例系数为,与光源距离的平方成反比,比例系数为均为正常数如图,强度分别为8,1的两个光源AB之间的距离为10,物体P在连结两光源的线段AB不含A若物体P到光源A的距离为x

试将物体P受到AB两光源的总照度y表示为x的函数,并指明其定义域;

当物体P在线段AB上何处时,可使物体P受到AB两光源的总照度最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中,中,,则的取值范围是( )

A. B.

C. D.

查看答案和解析>>

同步练习册答案