精英家教网 > 高中数学 > 题目详情
设函数f(x)、g(x)的定义域分别为F、G,且F⊆G,若对任意的x∈F,都有g(x)=f(x),则称g(x)为f(x)在G上的一个“延拓函数”.已知函数f(x)=(
12
)x(x≤0)
,若g(x)为f(x)在实数集R上的一个延拓函数,且g(x)是偶函数,则函数g(x)=
2|x|
2|x|
分析:由题意可得f(x)=(
1
2
)x
=2-x(x≤0),又g(x)为f(x)在实数集R上的一个延拓函数,且g(x)是偶函数,从而可得g(x)=2|x|
解答:解:∵f(x)=(
1
2
)x
=2-x(x≤0),g(x)为f(x)在实数集R上的一个延拓函数,且g(x)是偶函数,
∴g(x)=2|x|
故答案为:2|x|
点评:本题考查函数奇偶性的性质,对新定义“延拓函数”的理解是关键,考查分析转化能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

4、设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x),g(x)的定义域都是I,则g(x)>f(x)恒成立的充分必要条件是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数g(x)的图象经过坐标原点,且满足g(x+1)=g(x)+2x+1,设函数f(x)=m[g(x+1)-1]-lnx,其中m为常数且m≠0.
(1)求函数g(x)的解析式;
(2)当-2<m<0时,判断函数f(x)的单调性并且说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x),g(x)在[a,b]上可导,且f'(x)>g'(x),则当a<x<b时有(  )

查看答案和解析>>

同步练习册答案