£¨1£©Ñ¡ÐÞ4-4£º¾ØÕóÓë±ä»»
ÒÑÖªÇúÏßC1£ºy=
1
x
ÈÆÔ­µãÄæʱÕëÐýת45¡ãºó¿ÉµÃµ½ÇúÏßC2£ºy2-x2=2£¬
£¨I£©ÇóÓÉÇúÏßC1±ä»»µ½ÇúÏßC2¶ÔÓ¦µÄ¾ØÕóM1£»    
£¨II£©Èô¾ØÕóM2=
20
03
£¬ÇóÇúÏßC1ÒÀ´Î¾­¹ý¾ØÕóM1£¬M2¶ÔÓ¦µÄ±ä»»T1£¬T2±ä»»ºóµÃµ½µÄÇúÏß·½³Ì£®
£¨2£©Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì
ÒÑÖªÖ±ÏßlµÄ¼«×ø±ê·½³ÌÊǦÑcos¦È+¦Ñsin¦È-1=0£®ÒÔ¼«µãΪƽÃæÖ±½Ç×ø±êϵµÄÔ­µã£¬¼«ÖáΪxÖáµÄÕý°ëÖᣬ½¨Á¢Æ½ÃæÖ±½Ç×ø±êϵ£¬ÔÚÇúÏßC£º
x=-1+cos¦È
y=sin¦È
£¨¦ÈΪ²ÎÊý£©ÉÏÇóÒ»µã£¬Ê¹Ëüµ½Ö±ÏßlµÄ¾àÀë×îС£¬²¢Çó³ö¸Ãµã×ø±êºÍ×îС¾àÀ룮
£¨3£©£¨Ñ¡ÐÞ4-5£º²»µÈʽѡ½²£©
½«12cm³¤µÄϸÌúÏ߽سÉÈýÌõ³¤¶È·Ö±ðΪa¡¢b¡¢cµÄÏ߶Σ¬
£¨I£©ÇóÒÔa¡¢b¡¢cΪ³¤¡¢¿í¡¢¸ßµÄ³¤·½ÌåµÄÌå»ýµÄ×î´óÖµ£»
£¨II£©ÈôÕâÈýÌõÏ߶ηֱðΧ³ÉÈý¸öÕýÈý½ÇÐΣ¬ÇóÕâÈý¸öÕýÈý½ÇÐÎÃæ»ýºÍµÄ×îСֵ£®
·ÖÎö£º£¨1£©£¨I£©ÒòΪ°ÑÇúÏßC1ÄæʱÕëÐýת¦È½Ç£¬µÃµ½ÇúÏßC2£¬ÔòÐýת±ä»»¾ØÕóΪM1=
cos45¡ã-sin45¡ã
sin45¡ãcos45¡ã
£®
£¨II£©ÏÈÇó³öÒÀ´Î¾­¹ý¾ØÕóM1£¬M2¶ÔÓ¦µÄ±ä»»T1£¬T2¶ÔÓ¦µÄ¾ØÕó£¬ÔÙÉèÇúÏßC1ÉÏÈÎÒ»µã¾­¹ý±ä»»ºóµÄ¶ÔÓ¦µã×ø±ê£¬Óñ任ºóµÄ×ø±ê±íʾ±ä»»Ç°µÄ×ø±ê£¬ÔÙ´úÈë±ä»»Ç°ÇúÏßÂú×ãµÄ·½³Ì£¬»¯¼ò¼´µÃ±ä»»ºóµÄÇúÏß·½³Ì£®
£¨2£©ÏÈÓÉÖ±ÏßlµÄ¼«×ø±ê·½³ÌÇó³öÖ±½Ç×ø±ê·½³Ì£¬Éè³öÇúÏßCÉÏÈÎÒâÒ»µãP×ø±ê£¬Óõ㵽ֱÏߵľàÀ빫ʽÇó³öµãPµ½Ö±ÏßlµÄ¾àÀ룬ÔÙ½èÖú»ù±¾ÕýÏÒº¯ÊýµÄ×îÖµÇó³öµãPµ½Ö±ÏßlµÄ×îС¾àÀ룮
£¨3£©£¨I£©ÒòΪ³¤·½ÌåµÄÌå»ýΪabc£¬¶øa+b+c=12£¬Ó¦Óò»µÈʽabc¡Ü(
a+b+c
3
)
3
£¬¾Í¿ÉÇó³öÌå»ýµÄ×î´óÖµ£®
£¨II£©ÏÈ°ÑÈý¸öÕýÈý½ÇÐεÄÃæ»ýºÍÓÃS=
3
4
(l2+m2+n2)
±íʾ£¬ÒòΪl+m+n=4£¬¶ø£¨l2+m2+n2£©£¨12+12+12£©¡Ý£¨l+m+n£©2£¬ËùÒÔÖ»ÐèÈÃS³Ë3ÔÙ³ý3¼´¿É±äÐγɹ«Ê½µÄÐÎʽ£¬Çó³ö×îÖµ£®
½â´ð£º½â£º£¨1£©£¨I£©¡ßÇúÏßC1£ºy=
1
x
ÈÆÔ­µãÄæʱÕëÐýת45¡ãºóµÃµ½ÇúÏßC2£ºy2-x2=2£¬¡àÐýת±ä»»¾ØÕóM1=
cos45¡ã -sin45¡ã
sin45¡ãcos45¡ã
=
2
2
-
2
2
2
2
2
2
£»
£¨II£©ÉèÒÀ´Î¾­¹ý¾ØÕóM1£¬M2¶ÔÓ¦µÄ±ä»»T1£¬T2¶ÔÓ¦µÄ¾ØÕóM=M2M1=
20
03
2
2
-
2
2
2
2
2
2
=
2
-
2
3
2
2
3
2
2

ÈÎÈ¡ÇúÏßC1£ºy=
1
x
ÉϵÄÒ»µãP£¨x£¬y£©£¬ËüÔڱ任TM×÷ÓÃϱä³ÉµãP¡ä£¨x¡ä£¬y¡ä£©£¬ÔòÓÐ
x¡ä
y¡ä
=M
x
y
£¬¼´
x¡ä=
2
x-
2
y
y¡ä=
3
2
2
x+
3
2
2
y
£¬¡à
x=
3x¡ä+2y¡ä
6
2
y=
2y¡ä-3x¡ä
6
2

ÓÖÒòΪµãPÔÚC1£ºy=
1
x
ÉÏ£¬µÃµ½
y¡ä
18
2
-
x¡ä
8
2
=1¼´
y
18
2
-
x
8
2
=1£®
£¨2£©¡ßÖ±ÏßlµÄ¼«×ø±ê·½³ÌÊǦÑcos¦È+¦Ñsin¦È-1=0£¬¡àÖ±½Ç×ø±ê·½³ÌÊÇx+y-1=0
ÉèËùÇóµÄµãΪP£¨-1+cos¦È£¬sin¦È£©£¬ÔòPµ½Ö±ÏßlµÄ¾àÀëd=
|-1+cos¦È+sin¦È-1|
2
=|sin(¦È+
¦Ð
4
)-
2
|
µ±¦È+
¦Ð
4
=2k¦Ð+
¦Ð
2
£¬k¡ÊZʱ£¬¼´¦È=2k¦Ð+
¦Ð
4
£¬k¡ÊZ£¬dµÄ×îСֵΪ
2
-1´ËʱP(-1+
2
2
£¬
2
2
)

£¨3£©£¨I£©ÓÉÒÑÖªµÃ£¬a+b+c=12£¬¡àV=abc¡Ü(
a+b+c
3
)3
=64£»
µ±ÇÒ½öµ±a=b=c=4ʱ£¬µÈºÅ³ÉÁ¢£®
£¨II£©ÉèÈý¸öÕýÈý½ÇÐεı߳¤·Ö±ðΪl£¬m£¬n£¬Ôòl+m+n=4
¡àÕâÈý¸öÕýÈý½ÇÐÎÃæ»ýºÍΪS=
3
4
(l2+m2+n2)

¡à3S=
3
4
(l2+m2+n2)(12+12+12)
¡Ý
3
4
(l+m+n)2=4
3

¡àS¡Ý
4
3
3

µ±ÇÒ½öµ±a=b=c=1ʱ£¬µÈºÅ³ÉÁ¢£®
µãÆÀ£º±¾Ì⣨1£©Ö÷Òª¿¼²éÁËÇúÏßµÄÐýת±ä»»¾ØÕóµÄÇó·¨ÒÔ¼°¸ù¾ÝÐýת±ä»»ÇóÇúÏß·½³Ì£¬£¨2£©¿¼²éÁ˼«×ø±ê·½³ÌÓëÖ±½Ç×ø±ê·½³ÌµÄ»¥»»£¬£¨3£©¿¼²éÁ˾ùÖµ²»µÈʽºÍ¿ÂÎ÷²»µÈʽµÄÓ¦Óã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º½­ËÕÊ¡µ¤ÑôÊÐ08-09ѧÄê¸ß¶þÏÂѧÆÚÆÚÄ©²âÊÔ£¨Àí£© ÌâÐÍ£º½â´ðÌâ

 £¨±¾ÌâÊÇÑ¡×öÌ⣬Âú·Ö28·Ö£¬ÇëÔÚÏÂÃæËĸöÌâÄ¿ÖÐÑ¡Á½¸ö×÷´ð£¬Ã¿Ð¡Ìâ14·Ö£¬¶à×ö°´Ç°Á½Ìâ¸ø·Ö£©

A£®(Ñ¡ÐÞ4-1£º¼¸ºÎÖ¤Ã÷Ñ¡½²)

Èçͼ£¬¡÷ABCÊÇ¡ÑOµÄÄÚ½ÓÈý½ÇÐΣ¬PAÊÇ¡ÑOµÄÇÐÏߣ¬PB½»ACÓÚµãE£¬½»¡ÑOÓÚµãD£¬ÈôPE£½PA£¬£¬PD£½1£¬BD£½8£¬ÇóÏ߶ÎBCµÄ³¤.

 

 

 

 

 

 

B£®(Ñ¡ÐÞ4-2£º¾ØÕóÓë±ä»»)

ÔÚÖ±½Ç×ø±êϵÖУ¬ÒÑÖªÍÖÔ²£¬¾ØÕóÕ󣬣¬ÇóÔÚ¾ØÕó×÷ÓÃϱ任ËùµÃµ½µÄͼÐεÄÃæ»ý.

C£®(Ñ¡ÐÞ4-4£º×ø±êϵÓë²ÎÊý·½³Ì)

Ö±Ïß(Ϊ²ÎÊý£¬Îª³£ÊýÇÒ)±»ÒÔÔ­µãΪ¼«µã£¬ÖáµÄÕý°ëÖáΪ¼«Öᣬ·½³ÌΪµÄÇúÏßËù½Ø£¬Çó½ØµÃµÄÏÒ³¤.

D£®(Ñ¡ÐÞ4-5£º²»µÈʽѡ½²)

É裬ÇóÖ¤£º.

 

 

 

 

 

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸