精英家教网 > 高中数学 > 题目详情
已知函数f(x)=asinx•cosx-
3
acos2x+
3
2
a+b(a>0)
(1)写出函数的最小正周期和对称轴;
(2)设x∈[0,
π
2
]
,f(x)的最小值是-2,最大值是
3
,求实数a,b的值.
分析:直接利用二倍角公式以及两角和的正弦函数化简函数的表达式为一个角的一个三角函数的形式,
(1)利用周期公式求出函数的周期.
(2)通过x的范围求出相位的范围利用正弦函数的最值求解即可.
解答:解:f(x)=
1
2
asin2x-
3
a
2
(1+cos2x)+
3
2
a+b

=
a
2
sin2x-
3
a
2
cos2x+b=asin(2x-
π
3
)+b
(3分)
(1)最小正周期T=
|ω|

对称轴当2x-
π
3
=kπ+
π
2
时,x=
2
+
12
,k∈Z(5分)
(2)0≤x≤
π
2
,-
π
3
≤2x-
π
3
3
,-
3
2
≤sin(2x-
π
3
)≤1

f(x)min=-
3
2
a+b=-2,f(x)max=a+b=
3

-
3
2
a+b=-2
a+b=
3
a=2
b=-2+
3
(12分)
点评:本题考查三角函数的化简求值,两角和与差的三角函数的应用,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)当a∈[-2,
1
4
)
时,求f(x)的最大值;
(2)设g(x)=[f(x)-lnx]•x2,k是g(x)图象上不同两点的连线的斜率,否存在实数a,使得k≤1恒成立?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•海淀区二模)已知函数f(x)=a-2x的图象过原点,则不等式f(x)>
34
的解集为
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x|的图象经过点(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a•2x+b•3x,其中常数a,b满足a•b≠0
(1)若a•b>0,判断函数f(x)的单调性;
(2)若a=-3b,求f(x+1)>f(x)时的x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-2|x|+1(a≠0),定义函数F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 给出下列命题:①F(x)=|f(x)|; ②函数F(x)是奇函数;③当a<0时,若mn<0,m+n>0,总有F(m)+F(n)<0成立,其中所有正确命题的序号是
 

查看答案和解析>>

同步练习册答案