精英家教网 > 高中数学 > 题目详情

【题目】在正四面体 ABCD 中,P,Q分别是棱 AB,CD的中点,E,F分别是直线AB,CD上的动点,M 是EF 的中点,则能使点 M 的轨迹是圆的条件是( )

A. PE+QF=2B. PEQF=2

C. PE=2QFD. PE2+QF2=2

【答案】D

【解析】

先由对称性找到PQ、EF的中点在中截面GHLK上运动,利用向量的加减运算,得到,结合正四面体的特征将等式平方得到4,由圆的定义得到结论.

如图:取BC、BD、AC、AD的中点为G、H、K、L,因为P、Q是定点,所以PQ的中点O为定点,由对称性可知,PQ、EF的中点在中截面GHLK上运动,

+=+,∴

又在正四面体中,对棱垂直,∴PEQF,

∴4=

若点M的轨迹是以O为圆心的圆,则为定值,

只有D符合题意,故选D.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数上的偶函数,其图象关于点对称,且在区间上是单调函数,则的值是( )

A. B. C. D. 无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,均为边长为的等边三角形.

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求函数的单调区间和极值;

2)若函数在区间上存在零点,求的最小值.(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

1)试讨论的单调区间,

2)若时,存在x使得不等式成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,若对任意的 aR,存在 [0,2] ,使得成立,则实数k的最大值是_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

(I)若对任意的x0恒成立,求实数a的值;

(II)若直线l:的图像相切于点Q(m,n) ;

(i)试用m表示a与k;

(ii)若对给定的k,总存在三个不同的实数a1,a2,a3,使得直线l与曲线同时相切,求实数k的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知以M为圆心的圆M: 及其上一点A24

1)设圆Nx轴相切,与圆M外切,且圆心N在直线x=6上,求圆N的标准方程;

2)设平行于OA的直线l与圆M相交于BC两点,且BC=OA,求直线l的方程;

3)设点Tt,o)满足:存在圆M上的两点PQ,使得,求实数t的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的右焦点为,离心率

(1)求椭圆C的标准方程;

(2)已知动直线l过点F,且与椭圆C交于AB两点,试问x轴上是否存在定点M ,使得恒成立?若存在,求出点M的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案