精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=$\frac{6}{x-1}$,
(1)判断函数f(x)在(1,+∞)上的单调性并用单调性的定义证明;
(2)若x∈[2,4],求函数f(x)值域.

分析 (1)根据减函数的定义,设x1>x2>1,通过作差证明f(x1)<f(x2)即可.
(2)由(1)知函数f(x)在[2,4]上是减函数,即可求函数f(x)值域.

解答 解:(1)函数f(x)在(1,+∞)上是减函数,证明如下:
设x1>x2>1,则:f(x1)-f(x2)=$\frac{6({x}_{2}-{x}_{1})}{({x}_{1}-1)({x}_{2}-1)}$,
∵x1>x2>1,
∴x2-x1<0,x1-1>0,x2-1>0,
∴f(x1)<f(x2);
∴f(x)在(1,+∞)上是单调减函数.
(2)由(1)知函数f(x)在[2,4]上是减函数,
∴f(x)min=f(4)=2,f(x)max=f(2)=6.

点评 考查减函数的定义,以及根据减函数的定义证明一个函数为减函数的方法及过程,考查单调性的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若实数a,b满足$\frac{1}{a}+\frac{4}{b}=\sqrt{ab}$,则ab的最小值为(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.$(1+x){(1-\sqrt{x})^6}$展开式中x3项系数为(  )
A.14B.15C.16D.17

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知抛物线y2=2x上一点A到焦点F的距离与其到对称轴的距离之比为9:4,且|AF|>2,点A到原点的距离为(  )
A.$\sqrt{41}$B.4$\sqrt{5}$C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.把4名中学生分别推荐到3所不同的大学去学习,每个大学至少收一名,全部分完,不同的分配方案数为36.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.向量$\overrightarrow a=({2,-1}),\overrightarrow b=({x,1})$,若$2\overrightarrow a+\overrightarrow b$与$\overrightarrow b$共线,则x=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在二项式(x3-$\frac{\sqrt{2}}{\sqrt{x}}$)6展开式中项的x4系数为60.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知是定义在R上的函数,且满足①f(4)=0;②曲线y=f(x+1)关于点(-1,0)对称;③当x∈(-4,0)时,$f(x)={log_2}(\frac{x}{{{e^{|x|}}}}+{e^x}-m+1)$,若y=f(x)在x∈[-4,4]上有5个零点,则实数m的取值范围为[-3e-4,1)∪{-e-2}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知两点M(2,-3),N(-3,-2),斜率为k的直线l过点P(1,1)且与线段MN相交,则k的取值范围是(-∞,-4]∪[$\frac{3}{4}$,+∞).

查看答案和解析>>

同步练习册答案