精英家教网 > 高中数学 > 题目详情
11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,且过点$(1,\frac{{\sqrt{2}}}{2})$.
(1)求椭圆C的方程;
(2)动直线l与椭圆C有且只有一个公共点,问:在x轴上是否存在两个定点,它们到直线l的距离之积等于1?如果存在,求出这两个定点的坐标;如果不存在,说明理由.

分析 (1)由椭圆的离心率为$\frac{{\sqrt{2}}}{2}$,过点$(1,\frac{{\sqrt{2}}}{2})$,求出a,b,由此能求出椭圆的方程.
(2)当直线l的斜率存在时,设其方程为y=kx+m,代入椭圆方程,得(2k2+1)x2+4kmx+2m2-2=0,由根的判别式求出m2=2k2+1,由此能求出存在两个定点M1(1,0),M2(-1,0),使它们到直线l的距离之积等于1.

解答 (本题满分13分)
解:(1)∵椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,
∴a2=2c2,a2=2b2,又过点$(1,\frac{{\sqrt{2}}}{2})$,…(2分)
∴$\frac{1}{a^2}+\frac{1}{{2{b^2}}}=1⇒\frac{1}{{2{b^2}}}+\frac{1}{{2{b^2}}}=1⇒{b^2}=1$
∴a2=2,
故所求椭圆的方程为$\frac{{x}^{2}}{2}+{y}^{2}$=1.…(5分)
(2)当直线l的斜率存在时,设其方程为y=kx+m,
代入椭圆方程,消去y,
整理得(2k2+1)x2+4kmx+2m2-2=0,(*)
方程(*)有且只有一个实根,又2k2+1>0,
所以△=16k2m2-4(2k2+1)(2m2-2)=0,整理,得m2=2k2+1,…(8分)
假设存在M1(λ1,0),M2(λ2,0)满足题设,
则由d1•d2=$\frac{|({λ}_{1}k+m)({λ}_{2}k+m)|}{{k}^{2}+1}$=$\frac{|{λ}_{1}{λ}_{2}{k}^{2}+({λ}_{1}+{λ}_{2})km+2{k}^{2}+1|}{{k}^{2}+1}$
=$\frac{|({λ}_{1}{λ}_{2}+2){k}^{2}+({λ}_{1}+{λ}_{2})km+1|}{{k}^{2}+1}$对任意的实数k恒成立,
所以,$\left\{\begin{array}{l}{{λ}_{1}{λ}_{2}+2=1}\\{{λ}_{1}+{λ}_{2}=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{{λ}_{1}=1}\\{{λ}_{2}=-1}\end{array}\right.$或$\left\{\begin{array}{l}{{λ}_{1}=-1}\\{{λ}_{2}=1}\end{array}\right.$,
当直线l的斜率不存在时,经检验符合题意.
综上,存在两个定点M1(1,0),M2(-1,0),使它们到直线l的距离之积等于1.…(13分)

点评 本题考查椭圆方程的求法,考查满足条件的点是否存在的判断与求法,是中档题,解题时要认真审题,注意椭圆性质、根的判别别式,韦达定理的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.给出下面四个命题(其中m,n,l为空间中不同的直线,α,β是空间中不同的平面)中正确的命题为(  )
A.m∥n,n∥α⇒m∥αB.α⊥β,α∩β=m,l⊥m⇒l⊥β
C.l⊥m,l⊥n,m?α,n?α⇒l⊥αD.m∩n=A,m∥α,m∥β,n∥α,n∥β⇒α∥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=-(x-5)|x|的单调递增区间是(0,$\frac{5}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数$f(x)={log_4}({{4^x}+1})+kx$是偶函数.
(1)求k的值;
(2)若函数$h(x)={4^{f(x)+\frac{1}{2}x}}+m×{2^x}-1,x∈[{0,{{log}_2}3}]$,是否存在实数m使得h(x)最小值为0,若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,有
①$\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{BC}$;
②$\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}=\overrightarrow{0}$;
③若($\overrightarrow{AB}+\overrightarrow{AC})•(\overrightarrow{AB}-\overrightarrow{AC})=0$•($\overrightarrow{AB}-\overrightarrow{AC})$=0,则△ABC是等腰三角形;
④若$\overrightarrow{AB}•\overrightarrow{AC}>0$,则△ABC为锐角三角形.
上述命题正确的是(  )
A.①②B.①④C.②③D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设f(x)为定义在R上的奇函数,当x≥0时,f(x)=2x+2x+b,则b为(  )
A.-1B.0C.1D.无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.将一个长方体的四个侧面和两个底面延展成平面后,可将空间分成24部分.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知定义在R上的奇函数f(x)满足当x≥0时,f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}(x+1),x∈[0,1)}\\{1-|x-3|,x∈[1,+∞)}\end{array}\right.$,则关于x的函数y=f(x)-a,(-1<a<0)的所有零点之和为(  )
A.2a-1B.2-a-1C.1-2-aD.1-2a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,已知点E为平行四边形ABCD的边AB上一点,$\overrightarrow{AE}$=2$\overrightarrow{EB}$,Fn(n∈N*)为边DC上的一列点,连接AFn交BD于Gn,点Gn(n∈N*)满足$\overrightarrow{{G_n}D}$=$\frac{1}{3}$an+1$\overrightarrow{{G_n}A}$-(3an+2)$\overrightarrow{{G_n}E}$,其中数列{an}是首项为1的正项数列,则a4的值为(  )
A.45B.51C.53D.61

查看答案和解析>>

同步练习册答案