£¨2013•ÑîÆÖÇøһģ£©¶ÔÓÚʵÊýa£¬½«Âú×ã¡°0¡Üy£¼1ÇÒx-yΪÕûÊý¡±µÄʵÊýy³ÆΪʵÊýxµÄСÊý²¿·Ö£¬ÓüǺÅ||x||±íʾ£¬¶ÔÓÚʵÊýa£¬ÎÞÇîÊýÁÐ{an}Âú×ãÈçÏÂÌõ¼þ£ºa1=|a£¬an+1=
||
1
an
 ||£¬an¡Ù0
0£¬an=0
ÆäÖÐn=1£¬2£¬3£¬¡­
£¨1£©Èôa=
2
£¬ÇóÊýÁÐ{an}£»
£¨2£©µ±a£¾
1
4
ʱ£¬¶ÔÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐan=a£¬Çó·ûºÏÒªÇóµÄʵÊýa¹¹³ÉµÄ¼¯ºÏA£®
£¨3£©ÈôaÊÇÓÐÀíÊý£¬Éèa=
p
q
 £¨p ÊÇÕûÊý£¬qÊÇÕýÕûÊý£¬p¡¢q»¥ÖÊ£©£¬ÎʶÔÓÚ´óÓÚqµÄÈÎÒâÕýÕûÊýn£¬ÊÇ·ñ¶¼ÓÐan=0³ÉÁ¢£¬²¢Ö¤Ã÷ÄãµÄ½áÂÛ£®
·ÖÎö£º£¨1£©ÓÉÌâÉèÖªa1=||
2
||
=
2
-1
£¬a2=||
1
a1
||
=||
1
2
-1
||
=||
2
+1||
=
2
-1
£¬ÓÉ´ËÄÜÇó³öan=
2
-1
£®
£¨2£©ÓÉa1=||a||=a£¬Öª
1
4
£¼a£¼1
£¬1£¼
1
a
£¼4£¬Óɴ˽øÐзÖÀàÌÖÂÛ£¬ÄÜÇó³ö·ûºÏÒªÇóµÄʵÊýa¹¹³ÉµÄ¼¯ºÏA£®
£¨3£©³ÉÁ¢£®Ö¤Ã÷£ºÓÉaÊÇÓÐÀíÊý£¬¿ÉÖª¶ÔÒ»ÇÐÕýÕûÊýn£¬anΪ0»òÕýÓÐÀíÊý£¬¿ÉÉèan=
pn
qn
£¬ÓÉ´ËÀûÓ÷ÖÀàÌÖÂÛ˼ÏëÄܹ»ÍƵ¼³öÊýÁÐ{am}ÖÐamÒÔ¼°ËüÖ®ºóµÄÏî¾ùΪ0£¬ËùÒÔ¶Ô²»´óqµÄ×ÔÈ»Êýn£¬¶¼ÓÐan=0£®
½â´ð£º½â£º£¨1£©¡ßÂú×ã¡°0¡Üy£¼1ÇÒx-yΪÕûÊý¡±µÄʵÊýy³ÆΪʵÊýxµÄСÊý²¿·Ö£¬ÓüǺÅ||x||±íʾ£¬
a1=
2
£¬an+1=
||
1
an
 ||£¬an¡Ù0
0£¬an=0
ÆäÖÐn=1£¬2£¬3£¬¡­
¡àa1=||
2
||
=
2
-1
£¬a2=||
1
a1
||
=||
1
2
-1
||
=||
2
+1||
=
2
-1
£¬¡­£¨2·Ö£©
ak=
2
-1
£¬Ôòak+1=||
1
ak
||
=||
2
+1||
=
2
-1
£¬
ËùÒÔan=
2
-1
£®¡­£¨4·Ö£©
£¨2£©¡ßa1=||a||=a£¬¡à
1
4
£¼a£¼1
£¬¡à1£¼
1
a
£¼4£¬
¢Ùµ±
1
2
£¼a£¼1
£¬¼´1£¼
1
a
£¼2ʱ£¬a2=||
1
a1
||
=||
1
a
||
=
1
a
-1=a£¬
ËùÒÔa2+a-1=0£¬
½âµÃa=
-1+
5
2
£¬£¨a=
-1-
5
2
∉£¨
1
2
£¬1£©£¬ÉáÈ¥£©£®¡­£¨6·Ö£©
¢Úµ±
1
3
£¼a¡Ü
1
2
£¬¼´2¡Ü
1
a
£¼3ʱ£¬a2=||
1
a1
||=||
1
a
||
=
1
a
-2=a
£¬
ËùÒÔa2+2a-1=0£¬
½âµÃa=
-2+
8
2
=
2
-1
£¬£¨a=-
2
-1
∉£¨
1
3
£¬
1
2
]£¬ÉáÈ¥£©£®¡­£¨7·Ö£©
¢Ûµ±
1
4
£¼a¡Ü
1
3
£¬¼´3¡Ü
1
a
£¼4ʱ£¬a2=||
1
a1
||=||
1
a
||=
1
a
-3=a
£¬
ËùÒÔa2+3a-1=0£¬
½âµÃa=
-3+
13
2
£¨a=
-3-
13
2
∉(
1
4
£¬
1
3
]
£¬ÉáÈ¥£©£®¡­£¨9·Ö£©
×ÛÉÏ£¬{a=
-1+
5
2
£¬a=
2
-1
£¬a=
-3+
13
2
}£®¡­£¨10·Ö£©
£¨3£©³ÉÁ¢£®¡­£¨11·Ö£©
Ö¤Ã÷£ºÓÉaÊÇÓÐÀíÊý£¬¿ÉÖª¶ÔÒ»ÇÐÕýÕûÊýn£¬anΪ0»òÕýÓÐÀíÊý£¬
¿ÉÉèan=
pn
qn
£¨pnÊǷǸºÕûÊý£¬qnÊÇÕýÕûÊý£¬ÇÒ
pn
qn
¼ÈÔ¼£©£®¡­£¨12·Ö£©
¢ÙÓÉa1=||
p
q
||=
p1
q1
£¬µÃ0¡Üp1¡Üq£»¡­£¨13·Ö£©
¢ÚÈôpn¡Ù0£¬Éèqn=apn+¦Â£¨0¡Ü¦ÂPn£¬¦Á£¬¦ÂÊǷǸºÕûÊý£©
Ôò
qn
pn
=a+
¦Â
pn
£¬¶øÓÉan=
pn
qn
£¬µÃ
1
an
=
qn
pn
£¬
an+1=||
1
an
||
=||
qn
pn
||
=
¦Â
pn
£¬
¹ÊPn+1=¦Â£¬qn+1=Pn£¬µÃ0¡ÜPn+1£¼Pn£®¡­£¨14·Ö£©
ÈôPn=0£¬Ôòpn+1=0£¬¡­£¨15·Ö£©
Èôa1£¬a2£¬a3£¬¡­£¬aq¾ù²»Îª0£¬ÔòÕâqÕýÕûÊý»¥²»ÏàͬÇÒ¶¼Ð¡ÓÚq£¬
µ«Ð¡ÓÚqµÄÕýÕûÊý¹²ÓÐq-1¸ö£¬Ã¬¶Ü£®¡­£¨17·Ö£©
¹Êa1£¬a2£¬a3£¬¡­£¬aqÖÐÖÁÉÙÓÐÒ»¸öΪ0£¬¼´´æÔÚm£¨1¡Üm¡Üq£©£¬Ê¹µÃam=0£®
´Ó¶øÊýÁÐ{am}ÖÐamÒÔ¼°ËüÖ®ºóµÄÏî¾ùΪ0£¬ËùÒÔ¶Ô²»´óqµÄ×ÔÈ»Êýn£¬¶¼ÓÐan=0£®¡­£¨18·Ö£©
£¨ÆäËü½â·¨¿É²Î¿¼¸ø·Ö£©
µãÆÀ£º±¾Ì⿼²éÊýÁеÄͨÏʽµÄÇ󷨣¬¿¼²é¼¯ºÏµÄÇ󷨣¬¿¼²éan=0ÊÇ·ñ³ÉÁ¢µÄÅжÏÓëÖ¤Ã÷£®×ÛºÏÐÔÇ¿£¬¼ÆËãÁ¿´ó£¬ÄѶȽϸߣ¬¶ÔÊýѧ˼άÄÜÁ¦µÄÒªÇó½Ï¸ß£®½âÌâʱҪÈÏÕæÉóÌ⣬עÒâµÈ¼Ûת»¯Ë¼ÏëºÍ·ÖÀàÌÖÂÛ˼ÏëµÄºÏÀíÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÑîÆÖÇøһģ£©ÒÑÖªF1¡¢F2Ϊ˫ÇúÏßC£º
x2
4
-y2=1
µÄ×ó¡¢ÓÒ½¹µã£¬µãPÔÚCÉÏ£¬¡ÏF1PF2=60¡ã£¬ÔòPµ½xÖáµÄ¾àÀëΪ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÑîÆÖÇøһģ£©ÍÖÔ²TµÄÖÐÐÄΪ×ø±êÔ­µãO£¬ÓÒ½¹µãΪF£¨2£¬0£©£¬ÇÒÍÖÔ²T¹ýµãE£¨2£¬
2
£©£®¡÷ABCµÄÈý¸ö¶¥µã¶¼ÔÚÍÖÔ²TÉÏ£¬ÉèÈýÌõ±ßµÄÖеã·Ö±ðΪM£¬N£¬P£®
£¨1£©ÇóÍÖÔ²TµÄ·½³Ì£»
£¨2£©Éè¡÷ABCµÄÈýÌõ±ßËùÔÚÖ±ÏßµÄбÂÊ·Ö±ðΪk1£¬k2£¬k3£¬ÇÒki¡Ù0£¬i=1£¬2£¬3£®ÈôÖ±ÏßOM£¬ON£¬OPµÄбÂÊÖ®ºÍΪ0£¬ÇóÖ¤£º
1
k1
+
1
k2
+
1
k3
Ϊ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÑîÆÖÇøһģ£©¡°a=3¡±ÊÇ¡°º¯Êýf£¨x£©=x2-2ax+2ÔÚÇø¼ä[3£¬+¡Þ£©ÄÚµ¥µ÷µÝÔö¡±µÄ£¨¡¡¡¡£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÑîÆÖÇøһģ£©Èôº¯Êýf£¨x£©=3xµÄ·´º¯ÊýΪf-1£¨x£©£¬Ôòf-1£¨1£©=
0
0
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2013•ÑîÆÖÇøһģ£©Èô¸´Êýz=
1-i
i
 £¨iΪÐéÊýµ¥Î»£©£¬Ôò|z|=
2
2
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸