【题目】已知椭圆的左焦点为F,点,过M的直线与椭圆E交于A,B两点,线段AB中点为C,设椭圆E在A,B两点处的切线相交于点P,O为坐标原点.
(1)证明:O、C、P三点共线;
(2)已知是抛物线的弦,所在直线过该抛物线的准线与y轴的交点,是弦在两端点处的切线的交点,小明同学猜想:在定直线上.你认为小明猜想合理吗?若合理,请写出所在直线方程;若不合理,请说明理由.
【答案】(1)证明见解析; (2)合理,在直线上
【解析】
(1)设出直线的方程,联立椭圆方程,根据韦达定理,利用导数求得任一点处切线的斜率,从而解得切线方程,得到点的坐标,由即可容易判断;
(2)联立的方程和抛物线方程,利用导数求得处的切线方程,结合已知条件,即可容易证明.
(1)设,,直线AB的方程为.联立
,消去x整理得,
由﹐得或
,
由椭圆对称性,设是椭圆在x轴上方的任意一点,
则由,得﹐
所以在处的切线斜率为,
故在处切线方程为,
结合化简得
切线PA方程为:,同理,
联立两切线方程消去y得,
联立解得,
由AB中点及可得
,、C、P三点共线.
(2)合理,在直线上.
证明如下:设,,
直线斜率一定存在,
联立消去y得,
,
由得,.
抛物线在处的切线方程为,
同理在处的切线方程为
联立解得,
故在直线上.
科目:高中数学 来源: 题型:
【题目】已知曲线的参数方程为:(为参数),的参数方程为:(为参数).
(1)化、的参数方程为普通方程,并说明它们分别表示什么曲线;
(2)若直线的极坐标方程为:,曲线上的点对应的参数,曲线上的点对应的参数,求的中点到直线的距离.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(Ⅰ)求直线的普通方程和曲线的直角坐标方程;
(Ⅱ)设为曲线上的点,,垂足为,若的最小值为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)若函数在,上单调递增,求实数的取值范围;
(2)若函数在处的切线平行于轴,是否存在整数,使不等式在时恒成立?若存在,求出的最大值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线和轴上的定点,过抛物线焦点作一条直线交于、两点,连接并延长,交于、两点.
(1)求证:直线过定点;
(2)求直线与直线最大夹角为,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|3x+2|.
(1)解不等式f(x)<4-|x-1|;
(2)已知m+n=1(m,n>0),若|x-a|-f(x)≤(a>0)恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD是菱形,点O是对角线AC与BD的交点,AB=2,∠BAD=60°,M是PD的中点.
(Ⅰ)求证:OM∥平面PAB;
(Ⅱ)平面PBD⊥平面PAC;
(Ⅲ)当三棱锥C﹣PBD的体积等于 时,求PA的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,垂直于所在的平面,为的直径,是弧上的一个动点(不与端点重合),为上一点,且是线段上的一个动点(不与端点重合).
(1)求证:平面;
(2)若是弧的中点,是锐角,且三棱锥的体积为,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com