精英家教网 > 高中数学 > 题目详情
如图,△PAC与△ABC是均以AC为斜边的等腰直角三角形,AC=4,E,F,O分别为PA,PB,AC的中点,G为OC的中点,且PO⊥平面ABC.
(1)证明:FE∥平面BOG;
(2)求二面角EO-B-FG的余弦值.
分析:(1)通过建立空间直角坐标系,利用平面BOE的法向量
n
FG
=0即可证明;
(2)利用两个平面的法向量的夹角公式即可得出.
解答:(1)证明:以O点为坐标原点,
OB
OC
OP
的方向为x轴,y轴,z轴的正方向建立空间直角坐标系数,
则O(0,0,0),B(2,0,0),C(0,2,0),A(0,-2,0),P(0,0,2),G(0,1,0),E(0,-1,1),F(1,0,1).
OE
=(0,-1,1)
OB
=(2,0,0)
FG
=(-1,1,-1)

设平面OBE的法向量为
n
=(x,y,z)

n
OE
=-y+z=0
n
OB
=2x=0
,令y=1,解得
n
=(0,1,1)

FG
n
=0+1-1=0
,∴
FG
n

∵G∉平面BOE,∴FG∥平面BOE;
(2)由 (1)的证法二可知.平面OBE的法向量为
n
=(0,1,1)

设平面BGF的法向量为
m
=(a,b,c)
,又
GB
=(2,-1,0)

GB
m
=2a-b=0
FG
n
=-a+b-c=0
,令c=1,则
m
=(1,2,1)

设二面角EO-B-FG的平面角为θ,则|cosθ|=
|
n
m
|
|
n
| |
m
|
=
3
2
×
6
=
3
2

由由图易知二面角EO-B-FG的平面角为锐角,
∴二面角EO-B-FG的余弦值为
3
2
点评:熟练掌握通过建立空间直角坐标系,利用平面BOE的法向量
n
FG
=0、两个平面的法向量的夹角公式求二面角的平面角等是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

22、如图,已知AP是⊙O的切线,P为切点,AC是⊙O的割线,与⊙O交于B,C两点,圆心O在∠PAC的内部,点M是BC的中点.
(Ⅰ)证明A,P,O,M四点共圆;
(Ⅱ)求∠OAM+∠APM的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,点D,E分别在棱
PB,PC上,且BC∥平面ADE
(I)求证:DE⊥平面PAC;
(Ⅱ)当二面角A-DE-P为直二面角时,求多面体ABCED与PAED的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)如图,直二面角E-AB-C中,四边形ABEF是矩形,AB=2,AF=2
3
,△ABC是以A为直角顶点的等腰直角三角形,点P是线段BF上的一个动点.
(1)若PB=PF,求异面直线PC与AB所成的角的余弦值;
(2)若二面角P-AC-B的大小为300,求证:FB⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,矩形ABCD中,AB=a,AD=b,过点D作DE⊥AC于E,交直线AB于F.现将△ACD沿对角线AC折起到△PAC的位置,使二面角P-AC-B的大小为60°.过P作PH⊥EF于H.
(I)求证:PH⊥平面ABC;
(Ⅱ)若a=
2
b
,求直线DP与平面PBC所成角的大小;
(Ⅲ)若a+b=2,求四面体P-ABC体积的最大值.
精英家教网

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(天津卷解析版) 题型:解答题

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BAC=45°,PA=AD=2,AC=1.

(Ⅰ)证明PC⊥AD;

(Ⅱ)求二面角A-PC-D的正弦值;

(Ⅲ)设E为棱PA上的点,满足异面直线BE与CD所成的角为30°,求AE的长.

 

【解析】解法一:如图,以点A为原点建立空间直角坐标系,依题意得A(0,0,0),D(2,0,0),C(0,1,0), ,P(0,0,2).

(1)证明:易得于是,所以

(2) ,设平面PCD的法向量

,即.不防设,可得.可取平面PAC的法向量于是从而.

所以二面角A-PC-D的正弦值为.

(3)设点E的坐标为(0,0,h),其中,由此得.

,故 

所以,,解得,即.

解法二:(1)证明:由,可得,又由,,故.又,所以.

(2)如图,作于点H,连接DH.由,,可得.

因此,从而为二面角A-PC-D的平面角.在中,,由此得由(1)知,故在中,

因此所以二面角的正弦值为.

(3)如图,因为,故过点B作CD的平行线必与线段AD相交,设交点为F,连接BE,EF. 故或其补角为异面直线BE与CD所成的角.由于BF∥CD,故.在中,

中,由,,

可得.由余弦定理,,

所以.

 

查看答案和解析>>

同步练习册答案