精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知,O为坐标原点,动点E满足:

(Ⅰ) 求点E的轨迹C的方程;
(Ⅱ)过曲线C上的动点P向圆O:引两条切线PA、PB,切点分别为A、B,直线AB与x轴、y轴分别交于M、N两点,求ΔMON面积的最小值.

(1);(2).

解析试题分析:






考点:本题主要考查椭圆的定义,椭圆的标准方程,直线与圆的位置关系,基本不等式的应用。
点评:中档题,本题以平面向量为工具,利用向量模的几何意义,明确了点的轨迹是椭圆,并运用椭圆的定义及几何性质求得椭圆标准方程。往往通过联立圆的方程,得到公共弦方程,为进一步解题奠定了基础。利用函数思想,得到三角形面积表达式,利用基本不等式求得面积的最值。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)
如图,椭圆长轴端点为为椭圆中心,为椭圆的右焦点,
,.

(1)求椭圆的标准方程;
(2)记椭圆的上顶点为,直线交椭圆于两点,问:是否存在直线,使点恰为的垂心?若存在,求出直线的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分15分)
给定椭圆C:,称圆心在原点O、半径是的圆为椭圆C的“准圆”.已知椭圆C的一个焦点为,其短轴的一个端点到点的距离为
(1)求椭圆C和其“准圆”的方程;
(2)若点是椭圆C的“准圆”与轴正半轴的交点,是椭圆C上的两相异点,且轴,求的取值范围;
(3)在椭圆C的“准圆”上任取一点,过点作直线,使得与椭圆C都只有一个交点,试判断是否垂直?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在平面直角坐标系中,是半圆的直径,是半圆(除端点)上的任意一点.在线段的延长线上取点,使,试求动点的轨迹方程

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)如图,已知直线OP1OP2为双曲线E:的渐近线,△P1OP2的面积为,在双曲线E上存在点P为线段P1P2的一个三等分点,且双曲线E的离心率为.

(1)若P1P2点的横坐标分别为x1x,则x1x2之间满足怎样的关系?并证明你的结论;
(2)求双曲线E的方程;
(3)设双曲线E上的动点,两焦点,若为钝角,求点横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求下列各曲线的标准方程
(Ⅰ)实轴长为12,离心率为,焦点在x轴上的椭圆;
(Ⅱ)抛物线的焦点是双曲线的左顶点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆O和定点A(2,1),由圆O外一点向圆O引切线PQ,切点为Q,且满足

(1) 求实数ab间满足的等量关系;
(2) 若以P为圆心所作的圆P与圆O有公共点,试求半径取最小值时圆P的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知椭圆的两焦点是F1(0,-1),F2(0,1),离心率e=
(1)求椭圆方程;
(2)若P在椭圆上,且|PF1|-|PF2|=1,求cos∠F1PF2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知椭圆的焦点在轴上,离心率为,对称轴为坐标轴,且经过点
(I)求椭圆的方程;
(II)直线与椭圆相交于两点, 为原点,在上分别存在异于点的点,使得在以为直径的圆外,求直线斜率的取值范围.

查看答案和解析>>

同步练习册答案