精英家教网 > 高中数学 > 题目详情
20.一个几何体的三视图如图所示,则该几何体的体积为$\frac{5\sqrt{3}}{3}$,该几何体的表面积为12+$\sqrt{3}$.

分析 由已知的三视图可得:该几何体是一个以俯视图为底面的三棱柱,切去一个三棱锥所得的组合体,进而得到答案.

解答 解:由三视图可知,该几何体是一个以俯视图为底面的三棱柱,切去一个三棱锥所得的组合体,
故其体积V=$\frac{1}{2}$×2×2×$\frac{\sqrt{3}}{2}$×2-$\frac{1}{3}$×$\frac{1}{2}$×2×2×$\frac{\sqrt{3}}{2}$×1=$\frac{5\sqrt{3}}{3}$,
五个面中分别是:一个边长是2的正方形;
一个边长是2的正三角形;
两个直角梯形,上底是1,下底是2,高是2;
一个底边是2,腰长是$\sqrt{5}$的等腰三角形,
故几何体的表面积S=22+2×$\frac{1}{2}$(1+2)×2+$\frac{1}{2}$×2×2×$\frac{\sqrt{3}}{2}$+$\frac{1}{2}$×2×2=12+$\sqrt{3}$
故答案为:$\frac{5\sqrt{3}}{3}$,12+$\sqrt{3}$

点评 本题考查的知识点是棱柱的体积和表面积,棱锥的体积和表面积,简单几何体的三视图,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}x,x>0}\\{{2}^{x},x≤0}\end{array}\right.$若关于x的方程f(x)=k有两个不等的实根,则实数k的取值范围是(  )
A.(0,+∞)B.(-∞,1)C.(0,1]D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.给出以下四个命题:
(1)如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,
(2)如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面
(3)如果一个平面内的无数条直线都平行于另一个平面,那么这两个平面互相平行
(4)如果一个平面经过另一个平面的一条垂线,则这两个平面垂直
其中正确的命题个数有(  )个.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=sin(2x+φ)(-π<φ<0)图象的一条对称轴是直线$x=\frac{π}{8}$,则φ=$-\frac{3π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若圆x2+y2+2x-4y+1=0上的任意一点关于直线2ax-by+2=0(a,b∈R+)的对称点仍在圆上,则$\frac{1}{a}$+$\frac{2}{b}$最小值为$3+2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.给下列五个命题:
①若方程x2+(a-3)x+a=0有一个正实根,一个负实根,则a<0;
②函数$y=\sqrt{{x^2}-1}+\sqrt{1-{x^2}}$是偶函数,但不是奇函数;
③函数f(x)的值域是[-2,2],则函数f(x+1)的值域为[-3,1];
④设函数y=f(x)的定义域为R,则函数y=f(1-x)与y=f(x-1)的图象关于y轴对称;
⑤一条曲线$y=\left\{\begin{array}{l}3-{x^2}(x∈[-\sqrt{3},\sqrt{3}])\\{x^2}-3(x∈(-∞,-\sqrt{3})∪(\sqrt{3},+∞))\end{array}\right.$和直线y=a(a∈R)的公共点个数是m,则m的值不可能是1.
其中正确命题的序号为①⑤(写出所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=lnx-$\frac{1}{2}$ax2+x,a∈R.
(1)当a=1时,求函数y=f(x)在点(1,f(1))处的切线方程;
(2)求函数f(x)的单调区间;
(3)是否存在实数a,使得函数f(x)的极值大于0?若存在,求a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}满足a1=9,其前n项和为Sn,对n∈N*,n≥2,都有Sn=3(Sn-1+3)
(Ⅰ)求数列{an}的通项公式;  
(Ⅱ)求证:数列{Sn+$\frac{9}{2}$}是等比数列.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.计算下列各式的值:
(1)${27^{\frac{1}{3}}}+{2^{-1}}-{π^0}+{(\sqrt{8})^{-\frac{2}{3}}}$;    
(2)(lg2)2+lg2×lg50+lg25.

查看答案和解析>>

同步练习册答案