精英家教网 > 高中数学 > 题目详情
(2013•奉贤区一模)已知Sn是等差数列{an}(n∈N*)的前n项和,且S6>S7>S5,有下列四个命题,假命题的是(  )
分析:根据题设条件可判断数列是递减数列,这样可判断A是否正确;
根据S6最大,可判断数列从第七项开始变为负的,可判断D的正确性:
利用等差数列的前n项和公式与等差数列的性质,可判断S12、S13的符号,这样就可判断B、C是否正确.
解答:解:∵等差数列{an}中,S6最大,且S6>S7>S5∴a1>0,d<0,A正确;
∵S6最大,a6>0,a7<0,∴D正确;
∵S13=
a1+a13
2
×13=
a7+a7
2
×13<0
∵a6+a7>0,a6>-a7,s12=
a1+a12
2
×12=
a6+a7
2
×12>0;
∴Sn的值当n≤6递增,当n≥7递减,前12项和为正,当n=13时为负.
故B正确;满足sn>0的n的个数有12个,故C错误;
故选C
点评:本题考查等差数列的前n项和的最值.在等差数列中Sn存在最大值的条件是:a1>0,d<0.
一般两种解决问题的思路:项分析法与和分析法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•奉贤区一模)已知x>0,y>0,且
2
x
+
1
y
=1
,若x+2y>m2+2m恒成立,则实数m的取值范围是
-4<m<2
-4<m<2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•奉贤区一模)已知Sn是等差数列{an}(n∈N*)的前n项和,且S5<S6,S6=S7>S8,则下列结论错误的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•奉贤区一模)等比数列{cn}满足cn+1+cn=10•4n-1,n∈N*,数列{an}满足cn=2an
(1)求{an}的通项公式;
(2)数列{bn}满足bn=
1
anan+1
,Tn为数列{bn}的前n项和.求
lim
n→∞
Tn

(3)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•奉贤区一模)在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”给出如下定义:若|x1-x2|≥|y1-y2|,则点P1与点P2的“非常距离”为|x1-x2|,若|x1-x2|<|y1-y2|,则点P1与点P2的“非常距离”为|y1-y2|.已知C是直线y=
3
4
x+3上的一个动点,点D的坐标是(0,1),则点C与点D的“非常距离”的最小值是
8
7
8
7

查看答案和解析>>

同步练习册答案