精英家教网 > 高中数学 > 题目详情

【题目】将函数的图象上所有点的横坐标缩短到原来的倍(纵坐标不变),再将所得的图象向左平移个单位长度后得到函数的图象.

1)写出函数的解析式;

2)若对任意 恒成立,求实数的取值范围;

3)求实数和正整数,使得上恰有个零点.

【答案】1;(2;(3)见解析.

【解析】

1)利用三角函数的图象变换,即可求得函数的解析式;

2)令,则恒成立,再根据二次函数的图象与性质,即可求解;

3)由题意可得的图象与上有2019个交点,分类讨论,即可求得的值.

1)把函数的图象上所有点的横坐标缩短到原来的倍,得到函数的图象,再向左平移个单位长度后得到函数的图象,

故函数的解析式为.

(2)若对于任意,则,所以

又由恒成立,

,则恒成立,

,解得.

3)因为上恰有个零点,

故函数的图象与上有2019个交点,

时,

①当时,函数的图象与上无交点;

②当时,函数的图象与上仅有一个交点,

此时要使得函数的图象与上有2019个交点,则

③当时,函数的图象与2个交点,

此时要使得函数的图象与上的交点个数,不能是2019个;

④当时,函数的图象与3个交点,

此时要使得函数的图象与上有2019个交点,则

综上可得,当时,;当时,.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了让税收政策更好的为社会发展服务,国家在修订《中华人民共和国个人所得税法》之后,发布了《个人所得税专项附加扣除暂行办法》,明确“专项附加扣除”就是子女教育、继续教育大病医疗、住房贷款利息、住房租金赠养老人等费用,并公布了相应的定额扣除标准,决定自2019年1月1日起施行,某机关为了调查内部职员对新个税方案的满意程度与年龄的关系,通过问卷调查,整理数据得如下2×2列联表:

40岁及以下

40岁以上

合计

基本满意

15

30

45

很满意

25

10

35

合计

40

40

80

(1)根据列联表,能否有99%的把握认为满意程度与年龄有关?

(2)为了帮助年龄在40岁以下的未购房的8名员工解决实际困难,该企业拟员工贡献积分(单位:分)给予相应的住房补贴(单位:元),现有两种补贴方案,方案甲:;方案乙:.已知这8名员工的贡献积分为2分,3分,6分,7分,7分,11分,12分,12分,将采用方案甲比采用方案乙获得更多补贴的员工记为“类员工”.为了解员工对补贴方案的认可度,现从这8名员工中随机抽取4名进行面谈,求恰好抽到3名“类员工”的概率。

附:,其中.

参考数据:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示的几何体QPABCD为一简单组合体,在底面ABCD中,∠DAB=60°,ADDCABBCQD⊥平面ABCDPAQDPA=1,ADABQD=2.

(1)求证:平面PAB⊥平面QBC

(2)求该组合体QPABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知四棱锥,底面ABCD是边长为1的正方形,,平面平面ABCD,当点C到平面ABE的距离最大时,该四棱锥的体积为(

A.B.C.D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《易经》是中国传统文化中的精髓,下图是易经八卦图(含乾、坤、巽、震、坎、离、艮、兑八卦),每卦有三根线组成(“”表示一根阳线,“”表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有三根阳线和三根阴线的概率__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家文明城市评审委员会对甲、乙两个城市是否能入围国家文明城市进行走访调查,派出10人的调查组,先后到甲、乙两个城市的街道、社区进行问卷调查,然后打分(满分100分),他们给出甲、乙两个城市分数的茎叶图如图所示:

1)请你用统计学的知识分析哪个城市更应该入围国家文明城市,并说明理由;

2)从甲、乙两个城市的打分中各抽取2个,在已知有大于80分的条件下,求抽到乙城市的分数都小于80分的概率.

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,直三棱柱中,的中点.

(I)若上的一点,且与直线垂直,求的值;

(Ⅱ)在(I)的条件下,设异面直线所成的角为45°,求直线与平面成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,集合

1)若集合中有且仅有个整数,求实数的取值范围;

2)集合,若存在实数,使得,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若三角形三边长都是整数且至少有一个内角为,则称该三角形为完美三角形.有关完美三角形有以下命题:

1)存在直角三角形是完美三角形

2)不存在面积是整数的完美三角形

3)周长为12完美三角形中面积最大为

4)若两个完美三角形有两边对应相等,且它们面积相等,则这两个完美三角形全等.

以上真命题有______.(写出所有真命题的序号).

查看答案和解析>>

同步练习册答案