精英家教网 > 高中数学 > 题目详情

【题目】某大学为调研学生在A,B两家餐厅用餐的满意度,从在A,B两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.

整理评分数据,将分数以为组距分成组:,得到A餐厅分数的频率分布直方图,和B餐厅分数的频数分布表:

B餐厅分数频数分布表

分数区间

频数

(Ⅰ)在抽样的100人中,求对A餐厅评分低于30的人数;

(Ⅱ)从对B餐厅评分在范围内的人中随机选出2人,求2人中恰有1人评分在范围内的概率;

(Ⅲ)如果从A,B两家餐厅中选择一家用餐,你会选择哪一家?说明理由.

【答案】(1)20(2)(3)见解析

【解析】试题分析:

(1)利用频率分布直方图求得,对A餐厅评分低于的人数为

(2)利用题意列出所有可能的事件,由古典概型公式求得概率

(3) 考查得分低于30分的人数所占的比例可得结论选择B餐厅用餐.

试题解析:

解:(Ⅰ)由A餐厅分数的频率分布直方图,得

对A餐厅评分低于的频率为

所以,对A餐厅评分低于的人数为

(Ⅱ)对B餐厅评分在范围内的有2人,设为

对B餐厅评分在范围内的有3人,设为

从这5人中随机选出2人的选法为:

,共10种.

其中,恰有1人评分在范围内的选法为:,共6种.

2人中恰有1人评分在范围内的概率为

从两个餐厅得分低于30分的人数所占的比例来看:

由(Ⅰ)得,抽样的100人中,A餐厅评分低于的人数为

所以,A餐厅得分低于30分的人数所占的比例为

B餐厅评分低于的人数为

所以,B餐厅得分低于30分的人数所占的比例为

所以会选择B餐厅用餐.

注:本题答案不唯一只要考生言之合理即可

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】对于,若数列满足,则称这个数列为“K数列”.

(Ⅰ)已知数列:1m+1m2是“K数列”,求实数的取值范围;

(Ⅱ)是否存在首项为-1的等差数列为“K数列”,且其前n项和满足

?若存在,求出的通项公式;若不存在,请说明理由;

(Ⅲ)已知各项均为正整数的等比数列是“K数列”,数列不是“K数列”,若,试判断数列是否为“K数列”,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,且椭圆上任意一点到左焦点的最大距离为,最小距离为.

(1)求椭圆的方程;

(2)过点的动直线交椭圆两点,试问:在坐标平面上是否存在一个定点,使得以线段为直径的圆恒过点?若存在,求出点的坐标:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角△ABC中,a、b、c分别为角A、B、C所对的边,且 a=2csinA
(1)确定角C的大小;
(2)若c= ,且△ABC的面积为 ,求a+b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,底面是直角梯形,上的一点.

(Ⅰ)求证:平面平面

(Ⅱ)如图(1),若,求证:平面

(Ⅲ)如图(2),若的中点,,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l经过直线2x+y﹣5=0与x﹣2y=0的交点,且点A(5,0)到l的距离为3,则直线l的方程为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从“充分不必要条件”“必要不充分条件”“充要条件”“既不充分也不必要条件”中,选出适当的一种填空:

(1)记集合A{1p,2}B{2,3},则“p3”是“ABB”的__________________

(2)a1”是“函数f(x)|2xa|在区间上为增函数”的________________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】请你设计一个包装盒.如图所示,ABCD是边长为60 cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得ABCD四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒.EFAB上,是被切去的一个等腰直角三角形斜边的两个端点.设AEFBx(cm)

(1)若广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?

(2)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某家具厂有方木料,五合板,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料,五合板,生产每个书橱需要方木料,五合板,出售一张书桌可获利润元,出售一个书橱可获利润元.

1)如果只安排生产书桌,可获利润多少?

2)如果只安排生产书橱,可获利润多少?

3)怎样安排生产可使所得利润最大?

查看答案和解析>>

同步练习册答案