精英家教网 > 高中数学 > 题目详情
对于函数f(x)=sinx+cosx,给出下列四个命题:
①存在α∈(0,
π
2
)
,使f(α)=
4
3
; 
②存在α∈(0,
π
2
)
,使f(x+α)=f(x+3α)恒成立; 
③存在φ∈R,使函数f(x+?)的图象关于y轴对称;
④函数f(x)的图象关于点(
4
,0)
对称; 
⑤若x∈[0,
π
2
]
,则f(x)∈[1,
2
]

其中正确命题的序号是
①③④⑤
①③④⑤
分析:利用特殊角的三角函数值及两角和与差的正弦函数公式,化简函数y=sinx+cosx为
2
sin(x+
π
4
),确定函数的值域,判断①的真假; 找出特殊值判断②;根据函数的对称轴判断③的真假;将 (
3
4
π,0)代入函数解析式成立,说明④正确.⑤若x∈[0,
π
2
]
,则有 (x+
π
4
)∈[
π
4
4
]
,可得 f(x)∈[1,
2
]
,故⑤正确.
解答:解:函数y=sinx+cosx=
2
sin(x+
π
4
),①α∈(0,
π
2
)时 y∈(1,
2
],因为
4
3
∈(1,
2
],所以为真命题;
②f(x+α)=f(x+3α)说明2α是函数的周期,函数f(x)的周期为2π,故α=π,显然为假命题;
③存在θ∈R使函数f(x+θ)的图象关于y轴对称,
函数f(x)是周期函数,并且有对称轴,适当平移即可满足题意,为真命题;
④函数f(x)的图象关于点 (
3
4
π,0)对称,当x=
4
时,f(
4
)=0,满足题意,为真命题,
⑤若x∈[0,
π
2
]
,则有 (x+
π
4
)∈[
π
4
4
]
,∴f(x)∈[1,
2
]
,故⑤为真命题,
故答案为 ①③④⑤.
点评:此题考查了两角和与差的正弦函数,正弦函数的定义域及值域,正弦函数的对称性,以及三角函数的周期性及其求法,要求学生掌握正弦函数的图象及性质,能够充分利用已知条件,灵活利用三角函数的恒等变形把函数解析式化为一个角的正弦函数是解题的关键,锻炼了学生分析问题、解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=exsinx.
(1)求函数f(x)的单调区间;
(2)如果对于任意的x∈[0,
π
2
],f(x)≥kx总成立,求实数k的取值范围;
(3)设函数F(x)=f(x)+excosx,x∈[-
2011π
2
2013π
2
].过点M(
π-1
2
,0
)作函数F(x)图象的所有切线,令各切点的横坐标构成数列{xn},求数列{xn}的所有项之和S的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x)和数列{an}满足下列条件:a1=a≠0,a2≠a1,当n∈N*时,an+1=f(an),且存在非零常数k使f(an+1)-f(an)=k(an+1-an)恒成立.
(1)若数列{an}是等差数列,求k的值;
(2)求证:数列{an}为等比数列的充要条件是f(x)=kx(k≠1).
(3)已知f(x)=kx(k>1),a=2,且bn=lnan(n∈N*),数列{bn}的前n项是Sn,对于给定常数m,若
S(m+1)nSmn
的值是一个与n无关的量,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列命题:
①质点的位移函数S(t)对时间t的导数就是质点的加速度函数;
②对于函数f(x)=2x2+1图象上的两点P(1,3)和Q(1+△x,3+△y),有
△y△x
=4+2△x

③若质点的位移S(t)与时间t的关系为S(t)=kt+b,则质点的平均速度与任意时刻的瞬时速度相等;
④“f'(x0)=0”是“函数y=f(x)在x=x0时取得极值”的充要条件.
其中,真命题的序号为
②③
②③

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x),如果有限集合S满足:①S⊆N*;②当x∈S时,f(x)∈S,则称集合S是函数f(x)的生成集.例如f(x)=4-x,那么集合S1={2},S2={1,3},S3={1,2,3}都是f(x)的生成集,对于f(x)=
ax+b
x-2
(x>2,a,b∈R,若f(x)是减函数,S是f(x)的生成集,则S不可能是(  )
A、{3,4,5,6,8,14}
B、{3,4,6,10,18}
C、{3,5,6,7,10,16}
D、{3,4,6,7,12,22}

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

给出下列命题:
①质点的位移函数S(t)对时间t的导数就是质点的加速度函数;
②对于函数f(x)=2x2+1图象上的两点P(1,3)和Q(1+△x,3+△y),有
△y
△x
=4+2△x

③若质点的位移S(t)与时间t的关系为S(t)=kt+b,则质点的平均速度与任意时刻的瞬时速度相等;
④“f'(x0)=0”是“函数y=f(x)在x=x0时取得极值”的充要条件.
其中,真命题的序号为______.

查看答案和解析>>

同步练习册答案