精英家教网 > 高中数学 > 题目详情
设p:实数x满足x2-4ax+3a2<0(a<0),q:实数x满足x2-x-6≤0或x2+2x-8>0,且q是p的必要不充分条件,求a的取值范围.
分析:结合一元二次不等式的解法,利用充分条件和必要条件的定义进行判断.
解答:解:由x2-4ax+3a2<0(a<0),得3a<x<a,即p:3a<x<a.
由x2-x-6≤0得-2≤x≤3,由x2+2x-8>0得x>2或x<-4.
即q:x≥-2或x<-4.
因为q是p的必要不充分条件,
所以a≤-4或-2≤3a,
解得a≤-4或a≥-
2
3
,因为a<0,
所以a≤-4或-
2
3
≤a
<0.
即a的取值范围a≤-4或-
2
3
≤a
<0.
点评:本题主要考查充分条件和必要条件的应用,利用一元二次不等式的解法先化简p,q是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设p:实数x满足x2+2ax-3a2<0(a>0),q:实数x满足x2+2x-8<0,且q是p的必要不充分条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设p:实数x满足x2-4ax+3a2<0,其中a<0;q:实数x满足
x+2x+4
≥0,且¬p是¬q的必要不充分条件,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设p:实数x满足x2-4ax+3a2<0,其中a>0,命题q:实数x 满足
x2-x-6≤0
x2+2x-8>0

(1)若a=1且p∧q为真,求实数x的取值范围;
(2)若q是p的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设p:实数x满足x2+2ax-3a2<0(a>0),q:实数x满足1<
5x+4
,且¬p是¬q的必要不充分条件,求a的取值范围.

查看答案和解析>>

同步练习册答案