【题目】已知曲线y=Asin(ωx+φ)(A>0,ω>0)上的一个最高点的坐标为(,),由此点到相邻最低点间的曲线与x轴交于点(π,0),φ∈(﹣,).
(1)求这条曲线的函数解析式;
(2)写出函数的单调区间.
【答案】(1)y=sin(x+);(2)[4kπ+,4kπ+],k∈Z.
【解析】解:(1)由题意可得A=,=﹣,求得ω=.
再根据最高点的坐标为(,),可得sin(×+φ)=,即sin(×+φ)=1 ①.
再根据由此最高点到相邻最低点间的曲线与x轴交于点(π,0),可得得sin(×+φ)=0,即sin(+φ)=0 ②,
由①②求得φ=,故曲线的解析式为y=sin(x+).
(2)对于函数y=sin(x+),令2kπ﹣≤+≤2kπ+,求得4kπ﹣≤x≤4kπ+,
可得函数的增区间为[4kπ﹣,4kπ+],k∈Z.
令2kπ+≤+≤2kπ+,求得4kπ+≤x≤4kπ+,
可得函数的减区间为[4kπ+,4kπ+],k∈Z.
科目:高中数学 来源: 题型:
【题目】直三棱柱中, 分别是的中点, 且,
(1)证明: .
(2)棱上是否存在一点,使得平面与平面所成锐二面角的余弦值为若存在,说明点的位置,若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
(1)若函数的图象与x轴无交点,求a的取值范围;
(2) 若函数在[-1,1]上存在零点,求a的取值范围;
(3)设函数,当时,若对任意的,总存在,使得,求b的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲乙两人参加某种选拔测试,在备选的10道题中,甲答对其中每道题的概率都是,乙能答对其中的8道题.规定每次考试都从备选的10道题中随机抽出4道题进行测试,只有选中的4个题目均答对才能入选;
(Ⅰ)求甲恰有2个题目答对的概率及甲答对题目数的数学期望与方差。
(Ⅱ)求乙答对的题目数X的分布列。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四边形ABCD是梯形,四边形CDEF是矩形,且平面ABCD⊥平面CDEF,∠BAD=∠CDA=90°,,M是线段AE上的动点.
(1)试确定点M的位置,使AC∥平面MDF,并说明理由;
(2)在(1)的条件下,求平面MDF将几何体ADE-BCF分成的两部分的体积之比.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆: 过椭圆: ()的短轴端点, , 分别是圆与椭圆上任意两点,且线段长度的最大值为3.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点作圆的一条切线交椭圆于, 两点,求的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】学校艺术节对同一类的,,,四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:
甲说:“是或作品获得一等奖”;
乙说:“作品获得一等奖”;
丙说:“,两项作品未获得一等奖”;
丁说:“是作品获得一等奖”.
若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com