(本题满分12分)已知椭圆C:=1(a>b>0)的离心率为,以原点为圆点,椭圆的短半轴为半径的圆与直线x-y+=0相切。
(Ⅰ)求椭圆的标准方程;
(Ⅱ)设P(4,0),A,B是椭圆C上关于x轴对称的任意两个不同的点,连接PB交随圆C于另一点E,证明直线AE与x轴相交于定点Q.
(Ⅰ)=1. (Ⅱ)直线AE与x轴相交于定点Q(1,0)。
【解析】
试题分析:(1)根据椭圆C:=1(a>b>0)的离心率为得到a,c的比值,以原点为圆点,椭圆的短半轴为半径的圆与直线x-y+=0相切。那么利用线与圆相切,利用点到直线的距离公式得到圆的半径。求解得到结论。
(2)由题意知直线PB的斜率存在,设直线PB的方程为y=k(x-4).与椭圆方程联立,然后结合韦达定理,得到k的表达式,进而得到交点定点的坐标。
解:(Ⅰ)由题意知e==,所以e2===.即a2=b2.
又因为b==,所以a2=4,b2=3.故椭圆的方程为=1.…4分
(Ⅱ)由题意知直线PB的斜率存在,设直线PB的方程为y=k(x-4).
由,得(4k2+3)x2-32k2x+64k2-12=0. ①…6分
设点B(x1,y1),E(x2,y2),则A(x1,-y1).直线AE的方程为y-y2=(x-x2).令y=0,得x=x2-.将y1=k(x1-4),y2=k(x2-4)代入,
整理,得x=. ②…8分
由①得x1+x2=,x1x2=…10分 代入②整理,得x=1.
所以直线AE与x轴相交于定点Q(1,0).……12分
考点:本题主要考查直线与椭圆的位置关系的运用。
点评:解决该试题的关键是熟练的运用椭圆的几何性质得到其椭圆的方程,以及联立方程组的思想,结合韦达定理得到k的值,求解得到定点。
科目:高中数学 来源: 题型:
π | 2 |
查看答案和解析>>
科目:高中数学 来源:安徽省合肥一中、六中、一六八中学2010-2011学年高二下学期期末联考数学(理 题型:解答题
(本题满分12分)已知△的三个内角、、所对的边分别为、、.,且.(1)求的大小;(2)若.求.
查看答案和解析>>
科目:高中数学 来源:2011届本溪县高二暑期补课阶段考试数学卷 题型:解答题
(本题满分12分)已知各项均为正数的数列,
的等比中项。
(1)求证:数列是等差数列;(2)若的前n项和为Tn,求Tn。
查看答案和解析>>
科目:高中数学 来源:2010-2011学年广东省揭阳市高三调研检测数学理卷 题型:解答题
(本题满分12分)
已知椭圆:的长轴长是短轴长的倍,,是它的左,右焦点.
(1)若,且,,求、的坐标;
(2)在(1)的条件下,过动点作以为圆心、以1为半径的圆的切线(是切点),且使,求动点的轨迹方程.
查看答案和解析>>
科目:高中数学 来源:2010年辽宁省高二上学期10月月考理科数学卷 题型:解答题
(本题满分12分)已知椭圆的长轴,短轴端点分别是A,B,从椭圆上一点M向x轴作垂线,恰好通过椭圆的左焦点,向量与是共线向量
(1)求椭圆的离心率
(2)设Q是椭圆上任意一点,分别是左右焦点,求的取值范围
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com