精英家教网 > 高中数学 > 题目详情
13.以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,圆C1的方程为ρ=4$\sqrt{2}cos(θ-\frac{π}{4})$,圆C2的参数方程为$\left\{\begin{array}{l}x=-1+acosθ\\ y=-1+asinθ\end{array}$,(θ为参数),若圆C1与圆C2外切,则实数a=$±\sqrt{2}$.

分析 首先,将所给的圆的参数方程和极坐标方程化为普通方程,然后,利用两圆相外切,建立等式,确定待求的值即可.

解答 解:∵圆C1的方程为ρ=4$\sqrt{2}cos(θ-\frac{π}{4})$,
∴ρ2=4ρcosθ+4ρsinθ,
∴x2+y2=4x+4y,
∴(x-2)2+(y-2)2=8,
∴O1(2,2),r1=2$\sqrt{2}$,
∵圆C2的参数方程为$\left\{\begin{array}{l}x=-1+acosθ\\ y=-1+asinθ\end{array}$,(θ为参数),
∴(x+1)2+(y+1)2=a2
∴O2(-1,-1),r2=|a|,
∵圆C1与圆C2外切,
∴|O1O2|=r1+r2
∴|a|=$\sqrt{2}$,
∴a=$±\sqrt{2}$,
故答案为:$±\sqrt{2}$.

点评 本题重点考查了参数方程和普通方程的互化、极坐标方程和直角坐标方程的互化、圆与圆的位置关系等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.求函数y=x3-2x2-x+2的零点,并画出它的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=$\frac{{\sqrt{3}}}{2}cosx+\frac{1}{2}$sinx的单调增区间[2kπ-$\frac{5π}{6}$,kπ+$\frac{π}{6}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.点p在曲线y=x3-x+3上移动,过点p的切线方程的倾斜角的取值范围有是(  )
A.[0,π)B.[0,$\frac{π}{2}$)∪[$\frac{3}{4}$π,π)C.[0,$\frac{π}{2}$]∪($\frac{π}{2}$,$\frac{3}{4}$π]D.[0,$\frac{π}{4}$]∪[$\frac{3}{4}$π,π)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在△ABC中,已知|$\overrightarrow{AB}$|=4,|$\overrightarrow{BC}$|=1,S△ABC=$\sqrt{3}$,则$\overrightarrow{AB}$•$\overrightarrow{BC}$的值为±2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知p:“直线x+y-m=0与圆(x-1)2+y2=1相交”;q:“方程x2-x+m-4=0的两根异号”.若p∨q为真,¬p为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.二次函数y=ax2+ax+2(a>0)在R上的最小值为f(a)
(1)写出f(a)的解析式
(2)证明:f(a)在[1,5]上递减.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\left\{\begin{array}{l}2x(x>0)\\ x+1(x≤0)\end{array}$,若f(a)+f(1)=0,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),A(x1,y1),B(x2,y2)均在抛物线上.
(1)写出该抛物线的标准方程及其准线方程;
(2)当直线PA与PB的斜率存在且倾斜角互补时,求y1+y2的值及直线AB的斜率.

查看答案和解析>>

同步练习册答案