【题目】已知△ABC三边长构成公差为d(d≠0)的等差数列,则△ABC最大内角α的取值范围为( )
A. <α≤
B. <α<π
C. ≤α<π
D. <α≤
科目:高中数学 来源: 题型:
【题目】如图,已知圆的半径为,,是圆上的一个动点,的中垂线交于点,以直线为轴,的中垂线为轴建立平面直角坐标系。
(Ⅰ)若点的轨迹为曲线,求曲线的方程;
(Ⅱ)设点为圆上任意一点,过作圆的切线与曲线交于两点,证明:以为直径的圆经过定点,并求出该定点的坐标。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)= 是奇函数.
(1)确定y=g(x),y=f(x)的解析式;
(2)若h(x)=f(x)+a在(﹣1,1)上有零点,求a的取值范围;
(3)若对任意的t∈(﹣4,4),不等式f(6t﹣3)+f(t2﹣k)<0恒成立,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣2|.
(1)解不等式:f(x+1)+f(x+2)<4;
(2)已知a>2,求证:x∈R,f(ax)+af(x)>2恒成立.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在Rt△AOB中, ,斜边AB=4,D是AB中点,现将Rt△AOB以直角边AO为轴旋转一周得到一个圆锥,点C为圆锥底面圆周上一点,且∠BOC=90°,
(1)求圆锥的侧面积;
(2)求直线CD与平面BOC所成的角的大小;(用反三角函数表示)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知平面 平面, 与分别是棱长为1与2的正三角形, // ,四边形为直角梯形, // , ,点为的重心, 为中点, .
(Ⅰ)当时,求证: //平面;
(Ⅱ)若直线与所成角为,试求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆,过点作圆的切线,切点分别为.直线恰好经过的右顶点和上顶点.
(1)求椭圆的方程;
(2)如图,过椭圆的右焦点作两条互相垂直的弦, .
①设中点分别为,证明:直线必过定点,并求此定点坐标;
②若直线, 的斜率均存在时,求由四点构成的四边形面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=x3+ax2+bx(x>0)的图像与x轴相切于M(3,0).
(1)求f(x)的解析式;
(2)是否存在两个不等正数s,t(s<t),当x∈[s,t]时,函数f(x)=x3+ax2+bx的值域也是[s,t],若存在,求出所有这样的正数s,t,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】联合国教科文组织规定,每年的4月23日是“世界读书日”.某校研究生学习小组为了解本校学生的阅读情况,随机调查了本校400名学生在这一天的阅读时间(单位:分钟),将时间数据分成5组:,并整理得到如下频率分布直方图.
(1)求的值;
(2)试估计该学校所有学生在这一天的平均阅读时间;
(3)若用分层抽样的方法从这400名学生中抽取50人参加交流会,则在阅读时间为的两组中分别抽取多少人?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com