精英家教网 > 高中数学 > 题目详情

【题目】已知△ABC三边长构成公差为d(d≠0)的等差数列,则△ABC最大内角α的取值范围为(
A. <α≤
B. <α<π
C. ≤α<π
D. <α≤

【答案】B
【解析】解:∵α为△ABC最大内角,∴3α>π,
即α>
由题意,不妨设三角形三边为a﹣d,a,a+d,(a>0,d>0),
则由余弦定理可得,cosα= = =2﹣ =2﹣
又∵三角形两边之和大于第三边,可得a﹣d+a>a+d,可得a>2d,即
∴cosα=2﹣ >﹣1,
又α为三角形内角,α∈(0,π),
可得:α∈( ,π).
故选:B.
【考点精析】本题主要考查了正弦定理的定义和余弦定理的定义的相关知识点,需要掌握正弦定理:;余弦定理:;;才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知圆的半径为,是圆上的一个动点,的中垂线于点,以直线轴,的中垂线为轴建立平面直角坐标系。

(Ⅰ)若点的轨迹为曲线,求曲线的方程;

(Ⅱ)设点为圆上任意一点,过作圆的切线与曲线交于两点,证明:以为直径的圆经过定点,并求出该定点的坐标。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知指数函数y=g(x)满足:g(3)=8,定义域为R的函数f(x)= 是奇函数.

(1)确定y=g(x),y=f(x)的解析式

(2)若h(x)=f(x)+a在(﹣1,1)上有零点,求a的取值范围;

(3)若对任意的t∈(﹣4,4),不等式f(6t﹣3)+f(t2﹣k)<0恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣2|.
(1)解不等式:f(x+1)+f(x+2)<4;
(2)已知a>2,求证:x∈R,f(ax)+af(x)>2恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在Rt△AOB中, ,斜边AB=4,D是AB中点,现将Rt△AOB以直角边AO为轴旋转一周得到一个圆锥,点C为圆锥底面圆周上一点,且∠BOC=90°,
(1)求圆锥的侧面积;
(2)求直线CD与平面BOC所成的角的大小;(用反三角函数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知平面 平面分别是棱长为12的正三角形, // ,四边形为直角梯形, // ,点的重心, 中点, .

)当时,求证: //平面

)若直线所成角为,试求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆,过点作圆的切线,切点分别为.直线恰好经过的右顶点和上顶点.

1)求椭圆的方程;

2)如图,过椭圆的右焦点作两条互相垂直的弦

①设中点分别为,证明:直线必过定点,并求此定点坐标;

②若直线 的斜率均存在时,求由四点构成的四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=x3+ax2+bx(x>0)的图像与x轴相切于M(3,0).
(1)求f(x)的解析式;
(2)是否存在两个不等正数s,t(s<t),当x∈[s,t]时,函数f(x)=x3+ax2+bx的值域也是[s,t],若存在,求出所有这样的正数s,t,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】联合国教科文组织规定,每年的4月23日是“世界读书日”.某校研究生学习小组为了解本校学生的阅读情况,随机调查了本校400名学生在这一天的阅读时间(单位:分钟),将时间数据分成5组:,并整理得到如下频率分布直方图.

(1)求的值;

(2)试估计该学校所有学生在这一天的平均阅读时间;

(3)若用分层抽样的方法从这400名学生中抽取50人参加交流会,则在阅读时间为的两组中分别抽取多少人?

查看答案和解析>>

同步练习册答案