精英家教网 > 高中数学 > 题目详情
已知△ABC中,AB边上的中线CM=2,若动点P满足
AP
=
1
2
sin2θ•
AB
+cos2θ•
AC
(θ∈R)
,则(
PA
+
PB
)•
PC
的最小值是
-2
-2
分析:由向量式变形可推得点P在CM上,而而
PA
+
PB
=2
PM
,故(
PA
+
PB
)•
PC
=2
PM
PC
,又
PM
PC
夹角为π,由数量积的定义结合基本不等式可得答案.
解答:解:由题意可得:
AB
=2
AM

AP
=sin2θ•
AM
+cos2θ•
AC
,又sin2θ+cos2θ=1
所以P、M、C三点共线,即点P在CM上,
PA
+
PB
=2
PM
,故(
PA
+
PB
)•
PC
=2
PM
PC

=2|
PM
||
PC
|
cosπ=-2|
PM
||
PC
|

|
PM
|+|
PC
|=CM=2
,由基本不等式可得:
|
PM
||
PC
|
(
|
PM
|+|
PC
|
2
)2
=1,故-2|
PM
||
PC
|
≥-2
故答案为:-2
点评:本题考查向量的数量积的运算和基本不等式的应用,由题意得出P、M、C三点共线是解决问题的关键,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知△ABC中,AB=4,∠BAC=45°,AC=3
2
,则△ABC的面积为
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•辽宁)选修4-1:几何证明讲
已知△ABC中,AB=AC,D是△ABC外接圆劣弧
AC
上的点(不与点A,C重合),延长BD至E.
(1)求证:AD的延长线平分∠CDE;
(2)若∠BAC=30°,△ABC中BC边上的高为2+
3
,求△ABC外接圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•大连一模)已知△ABC中,AB=2,AC=
3
,∠B=60°,则∠A的度数为
30°
30°

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC中,AB=1,BC=2,则角C的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

定义平面向量的正弦积为
a
b
=|
a
||
b
|sin2θ
,(其中θ为
a
b
的夹角),已知△ABC中,
AB
BC
=
BC
CA
,则此三角形一定是(  )
A、等腰三角形
B、直角三角形
C、锐角三角形
D、钝角三角形

查看答案和解析>>

同步练习册答案