分析 (1)设t=2x,利用f(x)>16-9×2x,转化不等式为二次不等式,求解即可.
(2)设t=2x,求出$t∈[{\frac{1}{2},2}]$,利用二次函数的性质求解最值.然后求解m的取值范围为$[{-2,\frac{1}{4}}]$.
(3)利用函数的奇偶性以及函数恒成立,结合基本不等式求解函数的最值,推出结果.
解答 解:(1)设t=2x,由f(x)>16-9×2x得:t-t2>16-9t,即t2-10t+16<0.…(7分)
∴2<t<8,即2<2x<8,∴1<x<3
∴不等式的解集为(1,3).…(4分)
(2)设t=2x,∵x∈[-1,1],∴$t∈[{\frac{1}{2},2}]$$f(x)=t-{t^2}=-{(t-\frac{1}{2})^2}+\frac{1}{4}$,$t=\frac{1}{2}时,f{(x)_{max}}=\frac{1}{4},t=2时,f{(x)_{min}}=-2$.∴f(x)的值域为$[{-2,\frac{1}{4}}]$.
函数有零点等价于方程有解等价于m在f(x)的值域内,
∴m的取值范围为$[{-2,\frac{1}{4}}]$.…(10分)
(3)由题意得$\left\{{\begin{array}{l}{f(x)=g(x)+h(x)={2^x}}\\{f(-x)=g(-x)+h(-x)={2^{-x}}}\end{array}}\right.$解得$\left\{{\begin{array}{l}{g(x)=\frac{{{2^x}-{2^{-x}}}}{2}}\\{h(x)=\frac{{{2^x}+{2^{-x}}}}{2}}\end{array}}\right.$
2ag(x)+h(2x)≥0即$({2^x}-{2^{-x}})a+\frac{{{2^{2x}}+{2^{-2x}}}}{2}≥0$,对任意x∈[1,2]恒成立,
又x∈[1,2]时,令$t={2^x}-{2^{-x}},t∈[{\frac{3}{2},\frac{15}{4}}]$,
$\begin{array}{c}a≥-\frac{{2}^{2x}+{2}^{-2x}}{2({2}^{x}-{2}^{-x})}=-\frac{{({2}^{x}-{2}^{-x})}^{2}+2}{2({2}^{x}-{2}^{-x})}=-\frac{1}{2}(t+\frac{2}{t}),\end{array}\right.$
$t+\frac{2}{t}$在$t∈[\frac{3}{2},\frac{15}{4}]$上单调递增,
当$t=\frac{3}{2}$时,$-\frac{1}{2}(t+\frac{2}{t})$有最大值$-\frac{17}{12}$,
所以$a≥-\frac{17}{12}$…(16分)
点评 本题考查函数与方程的综合应用,二次函数的性质,基本不等式以及函数恒成立的转化,考查计算能力.
科目:高中数学 来源: 题型:选择题
A. | $\overrightarrow n=±({1,-1,1})$ | B. | $\overrightarrow n=±({\frac{1}{3},-\frac{1}{3},\frac{1}{3}})$ | C. | $\overrightarrow n=±({\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$ | D. | $\overrightarrow n=±({\frac{{\sqrt{3}}}{3},-\frac{{\sqrt{3}}}{3},\frac{{\sqrt{3}}}{3}})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $3+2\sqrt{2}$ | B. | 6 | C. | $4\sqrt{2}$ | D. | $2\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{3\sqrt{5}}{5}$+1 | B. | $\frac{3\sqrt{5}}{5}-1$ | C. | $\frac{6\sqrt{5}}{5}$+1 | D. | $\frac{6\sqrt{5}}{5}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com