精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线的参数方程为为参数),直线过原点且倾斜角为,以原点为极点,轴的正半轴为极轴建立极坐标系.

1)求曲线和直线的极坐标方程;

2)若相交于不同的两点,求的取值范围.

【答案】1 ;(2

【解析】

1)利用同角的三角函数关系式中的平方和关系,把曲线的参数方程化成普通方程,再利用直角坐标方程和极坐标方程互化公式,把曲线的直角坐标方程化成极坐标方程.根据已知直接写出直线的极坐标方程;

2)将直线与曲线的极坐标方程联立,根据一元二次方程根的判别式,结合一元二次方程根与系数关系、极径的定义、正弦函数的最值进行求解即可.

解:(1)由为参数)有:

所以:的极坐标方程为:

直线的极坐标方程为:.

2)联立:有:

根据题有:,所以:.

在极坐标系下设,所以:.

所以:.

因为:,所以:

所以:取值范围为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知曲线,把上各点横坐标伸长为原来的2倍,纵坐标不变,得到函数的图象,关于有下述四个结论:

1)函数上是减函数;

2)当,且时,,则

3)函数(其中)的最小值为.

其中正确结论的个数为( .

A.1B.2C.3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】非典和新冠肺炎两场疫情告诉我们:应坚决杜绝食用野生动物,提倡文明健康,绿色环保的生活方式.在我国抗击新冠肺炎期间,某校开展一次有关病毒的网络科普讲座.高三年级男生60人,女生40人参加.按分层抽样的方法,在100名同学中选出5人,则男生中选出________.再从此5人中选出两名同学作为联络人,则这两名联络人中男女都有的概率是________.(第12分,第23分)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)函数,讨论的单调性;

2)曲线在点处的切线为,是否存在这样的点使得直线与曲线也相切,若存在,判断满足条件的点的个数,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】.对于nN*n2),定义一个如下数阵:,其中对任意的1in1jn,当i能整除j时,aij1;当i不能整除j时,aij0.设

(Ⅰ)当n6时,试写出数阵A66并计算

(Ⅱ)若[x]表示不超过x的最大整数,求证:

(Ⅲ)若,求证:gn)﹣1fn)<gn+1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某基地蔬菜大棚采用无土栽培方式种植各类蔬菜.根据过去50周的资料显示,该基地周光照量(小时)都在30小时以上,其中不足50小时的有5周,不低于50小时且不超过70小时的有35周,超过70小时的有10周.根据统计,该基地的西红柿增加量(千克)与使用某种液体肥料的质量(千克)之间的关系如图所示.

(1)依据上图,是否可用线性回归模型拟合的关系?请计算相关系数并加以说明(精确到0.01).(若,则线性相关程度很高,可用线性回归模型拟合)

(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪运行台数受周光照量限制,并有如下关系:

周光照量(单位:小时)

光照控制仪运行台数

3

2

1

若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.以频率作为概率,商家欲使周总利润的均值达到最大,应安装光照控制仪多少台?

附:相关系数公式

参考数据:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在实验地随机抽取各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图,记综合评分为80分及以上的花苗为优质花苗.

1)用样本估计总体,以频率作为概率,若在两块实验地随机抽取3株花苗,求所抽取的花苗中优质花苗数的分布列和数学期望;

2)填写下面的列联表,并判断是否有99%的把握认为优质花苗与培育方法有关.

优质花苗

非优质花苗

合计

甲培育法

20

乙培育法

10

合计

附:下面的临界值表仅供参考.

0.050

0.010

0.001

3.841

6.635

10.828

(参考公式:,其中

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,的中点,的中点,的中点,平面.

1)求证:平面平面

2)求二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,已知菱形的对角线交于点,点为线段的中点,,将三角形沿线段折起到的位置,,如图2所示.

(Ⅰ)证明:平面 平面

(Ⅱ)求三棱锥的体积.

查看答案和解析>>

同步练习册答案