精英家教网 > 高中数学 > 题目详情
精英家教网汶川大地震后,为了消除某堰塞湖可能造成的危险,救授指挥部商定,给该堰塞湖挖一个横截面为等腰梯形的简易引水槽(如图所示)进行引流,已知等腰梯形的下底与腰的长度都为a,且水槽的单位时间内的最大流量与横载面的面积为正比,比例系数k>0.
(1)试将水槽的最大流量表示成关于θ的函数f(θ);
(2)为确保人民的生命财产安全,请你设计一个方案,使单位时间内水槽的流量最大(即当θ为多大时,单位时间内水槽的流量最大).
分析:(1)利用三角形面积公式表示出水槽的最大流量,注意变量角的取值范围;
(2)利用(1)中的函数式,借助导数知识求出函数的最值,即将设计方案问题转化成最优化问题(最值)解决.
解答:解:(1)设水槽的横截面面积为s,
s=
1
2
[a+(a+2acosθ)]•asinθ=a2sinθ(1+cosθ).
精英家教网
所以f(θ)=ks=a2ksinθ(1+cosθ),θ∈(0,
π
2
).

(2)因为f'(θ)=a2k(2cos2θ+cosθ-1),
令f'(θ)=0,则2cos2θ+cosθ-1=0.
解得cosθ=
1
2
或cosθ=-1,
0<θ<
π
2
知cosθ≠-1,所以cosθ=
1
2
,θ=
π
3
.

0<θ<
π
3
时,f'(θ)>0,即f(θ)在(0,
π
3
)
上递增,
π
3
<θ<
π
2
时,f'(θ)<0,即f(θ)在(
π
3
π
2
)
上递减,
所以当θ=
π
3
时,水槽的流量最大,
即设计成θ=
π
3
的等腰梯形引水槽,可使单位时间内水槽的流量最大.
点评:本题主要考查函数在实际生活中的应用、解三角形知识和利用导数求函数最值的方法,解决实际问题通常有四个步骤:(1)阅读理解,认真审题;(2)引进数学符号,建立数学模型;(3)利用数学的方法,得到数学结果;(4)转译成具体问题作出解答,其中关键是建立数学模型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在汶川大地震后对唐家山堰塞湖的抢险过程中,武警官兵准备用射击的方法引爆从湖坝上游漂流而下的一个巨大的汽油罐.已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆.每次射击是相互独立的,且命中的概率都是
23

(Ⅰ)求油罐被引爆的概率;
(Ⅱ)如果引爆或子弹打光则停止射击,设射击次数为ξ.求ξ的分布列及数学期望E(ξ).( 结果用分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

汶川大地震后,为了消除某堰塞湖可能造成的危险,救授指挥部商定,给该堰塞湖挖一个横截面为等腰梯形的简易引水槽(如图所示)进行引流,已知等腰梯形的下底与腰的长度都为a,且水槽的单位时间内的最大流量与横载面的面积为正比,比例系数k>0.
(1)试将水槽的最大流量表示成关于θ的函数f(θ);
(2)为确保人民的生命财产安全,请你设计一个方案,使单位时间内水槽的流量最大(即当θ为多大时,单位时间内水槽的流量最大).

查看答案和解析>>

科目:高中数学 来源:2010年江苏省高考数学模拟试卷(压题卷)(解析版) 题型:解答题

汶川大地震后,为了消除某堰塞湖可能造成的危险,救授指挥部商定,给该堰塞湖挖一个横截面为等腰梯形的简易引水槽(如图所示)进行引流,已知等腰梯形的下底与腰的长度都为a,且水槽的单位时间内的最大流量与横载面的面积为正比,比例系数k>0.
(1)试将水槽的最大流量表示成关于θ的函数f(θ);
(2)为确保人民的生命财产安全,请你设计一个方案,使单位时间内水槽的流量最大(即当θ为多大时,单位时间内水槽的流量最大).

查看答案和解析>>

科目:高中数学 来源:2010年数学之友高考数学模拟试卷(解析版) 题型:解答题

汶川大地震后,为了消除某堰塞湖可能造成的危险,救授指挥部商定,给该堰塞湖挖一个横截面为等腰梯形的简易引水槽(如图所示)进行引流,已知等腰梯形的下底与腰的长度都为a,且水槽的单位时间内的最大流量与横载面的面积为正比,比例系数k>0.
(1)试将水槽的最大流量表示成关于θ的函数f(θ);
(2)为确保人民的生命财产安全,请你设计一个方案,使单位时间内水槽的流量最大(即当θ为多大时,单位时间内水槽的流量最大).

查看答案和解析>>

同步练习册答案