精英家教网 > 高中数学 > 题目详情
已知命题p:x2-x≥6或x2-x≤-6,q:x∈Z,且p假q真,则x的值为
-1,0,1,2
-1,0,1,2
分析:利用p假q真,得到对应的条件,然后求解即可.
解答:解:因为且p假q真,所以
x2-x<6
x2-x>-6
x∈Z

x2-x-6<0
x2-x+6>0
x∈Z

所以
-2<x<3
x∈R
x∈Z

故x的取值为-1,0,1,2.
故答案为:-1,0,1,2.
点评:本题主要考查利用命题真假求参数的取值范围,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

5、已知命题p:x2-x≥6,q:x∈Z,则使得“p且q”与“非q”同时为假命题的所有x组成的集合M=
{-1,0,1,2}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:x2-x-2≤0,命题q:x2-x-m2-m≤0.
(1)求¬p
(2)若¬p是¬q的充分不必要条件,求m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:x2+x+2-m=0有一正一负两根,命题q:4x2+4(m-2)x+1=0无实根,若命题p与命题q有且只有一个为真,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:x2-x-2≤0,命题q:x2-x-m2-m≤0.
(1)若?p为真,求x的取值范围;
(2)若?q是?p的充分不必要条件,求m的取值范围.

查看答案和解析>>

同步练习册答案