精英家教网 > 高中数学 > 题目详情
已知函数,构造函数,定义如下:当 时,;当时,,则的最大值为__________.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1a-x
-1
(其中a为常数,x≠a).利用函数y=f(x)构造一个数列{xn},方法如下:
对于给定的定义域中的x1,令x2=f(x1),x3=f(x2),…,xn=f(xn-1),…
在上述构造过程中,如果xi(i=1,2,3,…)在定义域中,那么构造数列的过程继续下去;如果xi不在定义域中,那么构造数列的过程就停止.
(Ⅰ)当a=1且x1=-1时,求数列{xn}的通项公式;
(Ⅱ)如果可以用上述方法构造出一个常数列,求a的取值范围;
(Ⅲ)是否存在实数a,使得取定义域中的任一实数值作为x1,都可用上述方法构造出一个无穷数列{xn}?若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2013届辽宁省高二下学期期中考试文科数学试卷(解析版) 题型:选择题

已知函数,构造函数,定义如下:

    当时,;当时,,那么(    )

      A.有最大值3,最小值1           B. 有最大值7,无最小值

  C.有最大值3,无最小值                D.无最大值,也无最小值

 

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试文科数学(湖南卷解析版) 题型:解答题

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年河南省郑州市高三上学期第一次月考文科数学卷 题型:选择题

已知函数,构造函数,定义如下:当时,,当时,那么           (    )

A.有最小值0,无最大值

B.有最小值-1,无最大值

C.有最大值1,无最小值

D.无最小值,也无最大值

 

查看答案和解析>>

科目:高中数学 来源:2010年辽宁省高二下学期第一次月考数学(文) 题型:选择题

已知函数构造函数,定义如下:当时,;当时,,那么              

     A.有最大值3,最小值-1         B. 有最大值7,无最小值

C.有最大值3,无最小值           D.无最大值,也无最小值

 

查看答案和解析>>

同步练习册答案