精英家教网 > 高中数学 > 题目详情
在三棱锥P-ABC中,任取两条棱,则这两条棱异面的概率是
 
分析:用列举法列出从6条棱中任取两条的方法种数,查出两条棱异面的事件数,然后利用古典概型概率计算公式求解.
解答:解:如图,
精英家教网
从6条棱中任取两条,利用列举法可知有15种取法,
是(a,b),(a,c),(a,d),(a,e),(a,f),(b,c),
(b,d),(b,e),(b,f),(c,d),(c,e),(c,f),
(d,e),(d,f),(e,f).
三棱锥中两条相对的棱所在是直线是异面直线,共有3对,
是(a,f),(b,e),(c,d).
∴取到两条棱异面的概率是
3
15
=
1
5

故答案为:
1
5
点评:本题考查了古典概型及其概率计算公式,考查了用列举法求时间的概率,是基础的计算题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA=PB=AB=
2
PC=
2
AC=
2
BC

(Ⅰ)求证:PA⊥BC; 
(Ⅱ)求二面角P-AB-C所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱锥P-ABC中,AB=3,BC=4,AC=5,PA=1  面PAB⊥面CAB,面PAC⊥面CAB,则三棱锥P-ABC的体积是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网在三棱锥P-ABC中,PA⊥平面ABC.
(1)若∠BAC=
π3
,AB=AC=PA=2,E、F分别为棱AB、PC的中点,求线段EF的长;
(2)求证:“∠PBC=90°”的充要条件是“平面PBC⊥平面PAB”.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•蚌埠二模)如图,在三棱锥P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D,E分别为AB,AC中点.
(I)求证:DE∥面PBC;
(II)求证:AB⊥PE;
(III)求三棱锥B-PEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC上一点,它的正(主)视图和侧(左)视图如图所示.
(1)证明:AD⊥平面PBC;
(2)求三棱锥D-ABC的体积.

查看答案和解析>>

同步练习册答案