精英家教网 > 高中数学 > 题目详情
如果关于实数x的方程ax2+
1
x
=3x
的所有解中,仅有一个正数解,那么实数a的取值范围为(  )
分析:原条件?a=
3
x
-
1
x3
有且仅有一个正实数解,令
1
x
=t(t≠0)
,t的符号与x的符号一致,则a=-t3+3t有且仅有一个正实数解,然后通过导数研究函数的单调性和极值,画出函数图象,结合图象可求出a的取值范围.
解答:解:关于实数x的方程ax2+
1
x
=3x
的所有解中,仅有一个正数解?a=
3
x
-
1
x3
有且仅有一个正实数解.
1
x
=t(t≠0)
,t的符号与x的符号一致,则a=-t3+3t有且仅有一个正实数解,
令f(t)=-t3+3t(t≠0),
f′(t)=-3t2+3,由f′(t)=0得t=1或t=-1.
又t∈(-1,1)时,f′(t)>0;t∈(-∞,-1),(1,+∞)时,
f′(t)<0.所以[f(t)]极大值=f(1)=2.
又t→-∞,f(t)→+∞;t→+∞,f(t)→-∞.
结合三次函数图象即可.
综上所述,实数a的取值范围为(-∞,0]∪{2}.
故选B.
点评:本题主要考查了根的存在性及根的个数判断,以及三次函数的性质,同时考查了数形结合与函数方程的思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如果关于实数x的方程ax2+
1x
=3x
的所有解中,仅有一个正数解,那么实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题:①若区间D内任意实数x都有f(x+1)>f(x),则y=f(x)在D上是增函数;②y=-
1
x
在定义域内是增函数;③函数f(x)=
1-x2
|x+1|-1
图象关于原点对称;④如果关于实数x的方程ax2+
1
x
=3x
的所有解中,正数解仅有一个,那么实数a的取值范围是a≤0;  其中正确的序号是

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

下列命题:①若区间D内任意实数x都有f(x+1)>f(x),则y=f(x)在D上是增函数;②y=-
1
x
在定义域内是增函数;③函数f(x)=
1-x2
|x+1|-1
图象关于原点对称;④如果关于实数x的方程ax2+
1
x
=3x
的所有解中,正数解仅有一个,那么实数a的取值范围是a≤0;  其中正确的序号是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果关于实数x的方程ax2+
1
x
=3x
的所有解中,仅有一个正数解,那么实数a的取值范围为______.

查看答案和解析>>

同步练习册答案