精英家教网 > 高中数学 > 题目详情

【题目】已知点.若曲线上存在两点,使为正三角形,则称型曲线.给定下列三条曲线:

其中型曲线的个数是

A.B.

C.D.

【答案】B

【解析】

对于①,A-11)到直线y=-x+3的距离为,若直线上存在两点BC,使ABC为正三角形,则|AB|=|AC|=,以A为圆心,以为半径的圆的方程为(x+12+y-12=6,联立
解得,或,后者小于0,所以对应的点不在曲线上,所以①不是.
对于②,化为,图形是第二象限内的四分之一圆弧,此时连接A点与圆弧和两坐标轴交点构成的三角形顶角最小为135°,所以②不是.
对于③,根据对称性,若上存在两点BC使ABC构成正三角形,则两点连线的斜率为1,设BC所在直线方程为x-y+m=0,由题意知A到直线距离为直线被所截弦长的倍,列方程解得m=-,所以曲线③是T型线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】是双曲线上的两点,线段的中点为,直线不经过坐标原点

1)若直线和直线的斜率都存在且分别为,求证:

2)若双曲线的焦点分别为,点的坐标为,直线的斜率为,求由四点所围成四边形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C1的极坐标方程为ρ4cosθ,直线C2的参数方程为t为参数).

1)求曲线C1的直角坐标方程和直线C2的普通方程;

2)若P10),直线C2与曲线C1相交于AB两点,求|PA||PB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应国家号召,打赢脱贫致富攻坚战,武汉大学团队带领湖北省大悟县新城镇熊湾村村民建立有机、健康、高端、绿色的蔬菜基地,并策划生产、运输、销售一体化的直销供应模式,据统计,当地村民两年时间成功脱贫.蔬菜种植基地将采摘的有机蔬菜以每份三斤称重并保鲜分装,以每份10元的价格销售到生鲜超市,每份15元的价格卖给顾客,如果当天前8小时卖不完,则超市通过促销以每份5元的价格卖给顾客(根据经验,当天能够把剩余的有机蔬菜都低价处理完毕,且处理完毕后,当天不再进货).该生鲜超市统计了100天有机蔬菜在每天的前8小时内的销售量(单位:份),制成如下表格(注:,且.若以100天记录的频率作为每日前8小时销售量发生的概率,该生鲜超市当天销售有机蔬菜利润的期望值为决策依据,若购进17份比购进18份的利润的期望值大,则x的最小值是________.

8小时内销售量

15

16

17

18

19

20

21

频数

10

x

16

16

15

13

y

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象是自原点出发的一条折线,当)时,该图象是斜率为的线段,其中常数,数列)定义.

1)若,求

2)求的表达式及的解析式(不必求的定义域);

3)当时,求的定义域,并证明的图象与的图象没有横坐标大于1的公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆的左右焦点分别为,椭圆右顶点为,点在圆.

1)求椭圆的标准方程;

2)点在椭圆上,且位于第四象限,点在圆上,且位于第一象限,已知,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某专卖店销售一新款服装,日销售量(单位为件)f(n) 与时间n1≤n≤30nN*)的函数关系如下图所示,其中函数f(n) 图象中的点位于斜率为 5 和-3 的两条直线上,两直线交点的横坐标为m,且第m天日销售量最大.

(Ⅰ)f(n) 的表达式,及前m天的销售总数;

(Ⅱ)按以往经验,当该专卖店销售某款服装的总数超过 400 件时,市面上会流行该款服装,而日销售量连续下降并低于 30 件时,该款服装将不再流行.试预测本款服装在市面上流行的天数是否会超过 10 天?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=丨x+a+1丨+丨x-丨,(a>0)。

(1)证明:f(x)≥5;

(2)若f(1)<6成立,求实数a的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为实数,函数,且函数是偶函数,函数在区间上是减函数,且在区间上是增函数.

(1)求函数的解析式;

(2)求实数的值;

(3)设,问是否存在实数,使得在区间上有最小值-2?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

同步练习册答案