精英家教网 > 高中数学 > 题目详情
7.若函数f(x)=x2+alnx在区间(1,+∞)上存在极小值,则(  )
A.a>-2B.a≥-2C.a<-2D.a≤-2

分析 求导数,设g(x)=2x2+a,利用函数f(x)=x2+alnx在区间(1,+∞)上存在极小值,可得g(1)=2+a<0,即可求出a的取值范围.

解答 解:∵f(x)=x2+alnx,
∴f′(x)=$\frac{2{x}^{2}+a}{x}$(x>0).
设g(x)=2x2+a,
∵函数f(x)=x2+alnx在区间(1,+∞)上存在极小值,
∴g(1)=2+a<0,
∴a<-2.
故选:C.

点评 本题考查了利用导数研究函数的极值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图所示,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2
(1)若点E、H分别为AB、DC的中点,求证:平面BD1H∥平面A1DE;
(2)若点G在AB上,且AG=$\frac{1}{3}$,求二面角D1-GC-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=ex-ax-1.
(Ⅰ)若函数f(x)的图象在x=0处的切线平行于x轴,求a和f(x)在[0,2]上的最小值;
(Ⅱ)若函数f(x)在R上单调递增,求a的取值范围;
(Ⅲ)当a>0时,设函数f(x)的最小值为g(a),求证g(a)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.如图是某学院抽取的学生体重的频率分布直方图,已知图中从左到右的前3个小组的频率依次成等差数列,第2小组的频数为20,则抽取的学生人数为80.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=x3+ax2+bx的图象与直线 y=-3x+8相切于点P(2,2).
(1)求a,b的值;
(2)求函数 f (x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=x3+$\frac{3}{2}$x2-6x+4的极值点有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$x2+cx+d有极值,则实数c的取值范围是(-∞,$\frac{1}{4}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x2-mx-m+3,m∈R.
(1)当m=3时,求函数f(x)的零点;
(2)若函数f(x)没有零点,求实数m的取值范围;
(3)若函数f(x)的一个零点在区间(0,1)上,另一个零点在区间(1,2)上,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数f(x)=ax3-x+1在x∈(-∞,+∞)内是减函数,则(  )
A.a≥0B.a≤0C.a<0D.a≤-1

查看答案和解析>>

同步练习册答案