精英家教网 > 高中数学 > 题目详情
定义数列中的前n项的积为数列的n项阶乘,记为,例如:(a3n+1)!!=a4•a7•a10•…•a3n+1,已知f(x)=x-sinx在[0,n]上的最大值为bn;设an=bn+sin n.
(1)求an
(2)求证:
(3)是否存在m∈N*使成立?若存在,求出所有的m的值;若不存在,请说明理由.
【答案】分析:(1)由f′(x)=1-cosx≥0,知f(x)在[0,n]上单调递增.所以f(n)max=f(n)=bn=n-sinn由此能求出an
(2)由能够证明
(3)由=,知对于任意的m∈N*均有
解答:解:(1)∵f′(x)=1-cosx≥0,
∴f(x)在[0,n]上单调递增.
∴f(n)max=f(n)=bn=n-sinn,
∴an=bn+sinn=n,
(2)∵


(数学归纳法按(1分)+(3分)+(1分)评分)
(3)由(2)知:
=

=
=
∴对于任意的m∈N*均有
点评:本题考查数列与不等式的综合运用,解题时要认真审题,注意挖掘题设中的隐含条件,合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(考生注意:本题请从以下甲乙两题中任选一题作答,若两题都答只以甲题计分)
甲:设数列{bn}的前n项和为Sn,且bn=2-Sn;数列{an} 为等差数列,且a5=9,a7=13.
(Ⅰ)求数列 {bn} 的通项公式;
(Ⅱ)若cn=anbn(n=1,2,3,…),Tn为数列{cn}的前n项和,求Tn
乙:定义在[-1,1]上的奇函数f(x),已知当x∈[-1,0]时,f(x)=数学公式(a∈R)
(Ⅰ)求f(x)在[0,1]上的最大值;
(Ⅱ)若f(x)是[0,1]上的增函数,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

定义“和常数列”:在一个数列中,如果每一项与它的后一项和都为同一个常数,那么这个数列叫做常数列,这个常数叫做该数列的和常.已知数列{an}是和常数列,且a1=2,和常为5,那么a18的值为______;若n为偶数,则这个数的前n项和Sn的计算公式为______.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年广东省广州市东风中学高三数学综合训练试卷8(理科)(解析版) 题型:解答题

定义“和常数列”:在一个数列中,如果每一项与它的后一项和都为同一个常数,那么这个数列叫做常数列,这个常数叫做该数列的和常.已知数列{an}是和常数列,且a1=2,和常为5,那么a18的值为    ;若n为偶数,则这个数的前n项和Sn的计算公式为   

查看答案和解析>>

科目:高中数学 来源:2007年上海市徐汇区零陵中学高三3月综合练习数学试卷(一)(解析版) 题型:解答题

在等差数列{an}中,a4S4=-14,S5-a5=-14,其中Sn是数列{an}的前n项之和,曲线Cn的方程是+=1,直线l的方程是y=x+3.
(1)求数列{an}的通项公式;   
(2)判断Cn与l的位置关系;
(3)当直线l与曲线Cn相交于不同的两点An,Bn时,令Mn=(|an|+4)|AnBn|,求Mn的最小值.
(4)对于直线l和直线外的一点P,用“l上的点与点P距离的最小值”定义点P到直线l的距离与原有的点到直线距离的概念是等价的.若曲线Cn与直线l不相交,试以类似的方式给出一条曲线Cn与直线l间“距离”的定义,并依照给出的定义,在Cn中自行选定一个椭圆,求出该椭圆与直线l的“距离”.

查看答案和解析>>

同步练习册答案