精英家教网 > 高中数学 > 题目详情
设函数f(x)在(-∞,+∞)上满足f(2-x)=f(2+x),f(7-x)=f(7+x),且在闭区间[0,7]上,只有f(1)=f(3)=0.
(Ⅰ)试判断函数y=f(x)的奇偶性;
(Ⅱ)试求方程f(x)=0在闭区间[-2005,2005]上的根的个数,并证明你的结论.
分析:(I)利用条件先求出函数的周期,再求出f(-3)=f(7)≠0,而f(3)=0,f(-3)≠-f(3)根据奇偶性的定义可知该函数为非奇非偶函数;
(2II)根据周期函数性质可知,只需求出一个周期里的根的个数,可求得f(x)在[0,10]和[-10,0]上均有有两个解,从而可知函数y=f(x)在[0,2005]上有402个解,在[-2005.0]上有400个解.
解答:解:由
f(2-x)=f(2+x)
f(7-x)=f(7+x)
?
f(x)=f(4-x)
f(x)=f(14-x)
?f(4-x)=f(14-x)?f(x)=f(x+10),
又f(3)=0,而f(7)≠0,?f(-3)=f(7)≠0?f(-3)≠f(3),f(-3)≠-f(3)
故函数y=f(x)是非奇非偶函数;
(II)由
f(2-x)=f(2+x)
f(7-x)=f(7+x)
?
f(x)=f(4-x)
f(x)=f(14-x)
?f(4-x)=f(14-x)?f(x)=f(x+10)
又f(3)=f(1)=0?f(11)=f(13)=f(-7)=f(-9)=0
因为在闭区间[0,7]上,只有f(1)=f(3)=0,故在[4,7]上无零点,
又f(7-x)=f(7+x),故在[4,10]上无零点,故在[0,10]上仅有两个解
故f(x)在[0,10]和[-10,0]上均有有两个解,
从而可知函数y=f(x)在[0,2005]上有402个解,在[-2005.0]上有400个解,
所以函数y=f(x)在[-2005,2005]上有802个解.
点评:本题主要考查了函数奇偶性的判断,以及函数的周期性和根的存在性及根的个数判断,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、设函数f(x)在区间[a,b]上连续,若满足
f(a)•f(b)≤0
,则方程f(x)=0在区间[a,b]上一定有实数根.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)在R上有定义,下列函数:①y=-|f(x)|;②y=|x|•f(x2);③y=-f(-x);④y=f(x)+f(-x)
其中偶函数的有
②④
②④
.(写出所有正确的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f1(x)=3|x-1|,f2(x)=a•3|x-2|,(x∈R,a>0).函数f(x)定义为:对每个给定的实数x,f(x)=
f1(x)    f1(x)≤f2(x) 
f2(x)    f1(x)>f2(x) 

(1)若f(x)=f1(x)对所有实数x都成立,求a的取值范围;
(2)设t∈R,t>0,且f(0)=f(t).设函数f(x)在区间[0,t]上的单调递增区间的长度之和为d(闭区间[m,n]的长度定义为n-m),求
d
t

(3)设g(x)=x2-2bx+3.当a=2时,若对任意m∈R,存在n∈[1,2],使得f(m)≥g(n),求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•保定一模)设函数f(x)在R上是可导的偶函数,且满足f (x-1)=-f (x+1),则曲线y=f (x)在点x=10处的切线的斜率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ex+ax2+bx.
(Ⅰ)当a=0,b=-1时,求f(x)的单调区间;
(Ⅱ)设函数f(x)在点P(t,f(t))(0<t<1)处的切线为l,直线l与y轴相交于点Q.若点Q的纵坐标恒小于1,求实数a的取值范围.

查看答案和解析>>

同步练习册答案