精英家教网 > 高中数学 > 题目详情

【题目】已知如表为“五点法”绘制函数f(x)=Asin(ωx+φ)图象时的五个关键点的坐标(其中A>0,ω>0,|φ|<π)

x

f(x)

0

2

0

﹣2

0

(Ⅰ)请写出函数f(x)的最小正周期和解析式;
(Ⅱ)求函数f(x)的单调递减区间;
(Ⅲ)求函数f(x)在区间[0, ]上的取值范围.

【答案】解:(Ⅰ)由表格可得A=2, = + ,∴ω=2,结合五点法作图可得2 +φ= ,∴φ=

∴f(x)=2sin(2x+ ),它的最小正周期为 =π.

(Ⅱ)令2kπ﹣ ≤2x+ ≤2kπ+ ,求得kπ﹣ ≤x≤kπ+

可得函数f(x)的单调递减区间为[kπ﹣ ,kπ+ ],k∈Z.

(Ⅲ)在区间[0, ]上,2x+ ∈[ ],sin(2x+ )∈[﹣ ,1],f(x)∈[﹣ ,2],

即函数f(x)的值域为[﹣ ,2].


【解析】(Ⅰ)由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数f(x)的解析式,从而求得它的周期.(Ⅱ)利用正弦函数的单调性,求得函数f(x)的单调递减区间.(Ⅲ)利用正弦函数的定义域和值域,求得函数f(x)在区间[0, ]上的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体中,EF⊥平面AEB,AE⊥EB,AD∥EF,EF∥BC.BC=2AD=4,EF=3,AE=BE=2,G为BC的中点.
(1)求证:AB∥平面DEG;
(2)求证:BD⊥EG;
(3)求二面角C﹣DF﹣E的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四面体ABCD及其三视图如图1,2所示.

(1)求四面体ABCD的体积;
(2)若点E为棱BC的中点,求异面直线DE和AB所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果函数f(x)=3sin(2x+φ)的图象关于点( ,0)成中心对称(|φ|< ),那么函数f(x)图象的一条对称轴是(
A.x=﹣
B.x=
C.x=
D.x=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)的定义域为R,若存在常数T≠0,使得f(x)=Tf(x+T)对任意的x∈R成立,则称函数f(x)是Ω函数. (Ⅰ)判断函数f(x)=x,g(x)=sinπx是否是Ω函数;(只需写出结论)
(Ⅱ)说明:请在(i)、(ii)问中选择一问解答即可,两问都作答的按选择(i)计分
(i)求证:若函数f(x)是Ω函数,且f(x)是偶函数,则f(x)是周期函数;
(ii)求证:若函数f(x)是Ω函数,且f(x)是奇函数,则f(x)是周期函数;
(Ⅲ)求证:当a>1时,函数f(x)=ax一定是Ω函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知y=f(x)是定义域为R的奇函数,当x∈[0,+∞)时,f(x)=x(2﹣x),
(1)写出函数y=f(x)在x∈(﹣∞,0)时的解析式;
(2)若关于x的方程f(x)=a恰有两个不同的解,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A={x|3≤x≤7},B={x|2a<x<a+4}.
(1)当a=1时,求A∩B和A∪B;
(2)若A∩B=,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆 =1(a>b>0)上一点A关于原点的对称点为B,F为其右焦点,若AF⊥BF,设∠ABF=α,且α∈[ ],则该椭圆离心率的最大值为(
A.
B.
C.
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合M={x|x2﹣1≤0},N={x| <2x+1<4,x∈Z},则M∩N=(
A.{﹣1,0}
B.{1}
C.{﹣1,0,1}
D.

查看答案和解析>>

同步练习册答案