精英家教网 > 高中数学 > 题目详情

从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有(  )

A.40种            B.60种             C.100种            D.120种

 

【答案】

B

【解析】

试题分析:

分2步进行,首先从5人中抽出两人在星期五参加活动,再从剩下的3人中,抽取两人安排在星期六、星期日参加活动,分别计算其情况数目,由分步计数原理计算可得答案解:根据题意,首先从5人中抽出两人在星期五参加活动,有种情况,再从剩下的3人中,抽取两人安排在星期六、星期日参加活动,有种情况,则由分步计数原理,可得不同的选派方法共有 =60种,故选B

考点:排列与组合

点评:本试题考查了排列组合的综合运用,注意优先考虑特殊元素,同时要区分排列和组合的含义,属于基础题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

10、从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有(  ).

查看答案和解析>>

科目:高中数学 来源: 题型:

从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有
60
60

查看答案和解析>>

科目:高中数学 来源: 题型:

(07年全国卷Ⅱ理)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有

 (A)40种                     (B)   60种                    (C) 100种                   (D) 120种

查看答案和解析>>

科目:高中数学 来源:2013届浙江省高二第一次月考数学试卷(解析版)(7-8班) 题型:选择题

从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有(     )

(A)40种         (B) 60种            (C) 100种           (D) 120种

 

查看答案和解析>>

同步练习册答案