精英家教网 > 高中数学 > 题目详情

【题目】已知向量,函数.

(1)求函数的对称中心;

(2)设锐角三个内角所对的边分别为,若和c

【答案】(1);(2),.

【解析】

(1)利用平面向量数量积的运算,三角函数恒等变换的应用化简函数解析式可得f(x),利用三角函数的对称中心即可得解.(2)由(1)知可得,结合A的范围可求,解法一:由余弦定理解得c的值,解法二:由正弦定理解得sinB,由B是锐角,可求cosB,利用三角形内角和定理,两角和的正弦函数公式可求sinC,根据正弦定理即可解得c的值.

,解x=故对称中心为.

(2).

,∴

,∴.

方法一 由余弦定理得

解得.

,则

为钝角,这与为锐角三角形不符,故.

.

方法二 由正弦定理得,解得.

是锐角,∴

由正弦定理得,解得.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某服务电话,打进的电话响第1声时被接的概率是0.1;响第2声时被接的概率是0.2;响第3声时被接的概率是0.3;响第4声时被接的概率是0.35.

(1)打进的电话在响5声之前被接的概率是多少?

(2)打进的电话响4声而不被接的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,记.

1)求曲线处的切线方程;

2)求函数的单调区间;

3)当时,若函数没有零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数)在处取得极值.

(1)求的单调区间;

(2)讨论的零点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线 与双曲线 的离心率相同,且双曲线C2的左、右焦点分别为F1 , F2 , M是双曲线C2一条渐近线上的某一点,且OM⊥MF2 ,则双曲线C2的实轴长为(
A.4
B.
C.8
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆心在x轴正半轴上的圆C与直线相切,与y轴交于MN两点,且

求圆C的标准方程;

过点的直线l与圆C交于不同的两点DE,若时,求直线l的方程;

已知Q是圆C上任意一点,问:在x轴上是否存在两定点AB,使得?若存在,求出AB两点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一个港口,相邻两次高潮发生时间相距,低潮时水的深度为,高潮时为,一次高潮发生在10月10日4:00,每天涨潮落潮时,水的深度与时间近似满足关系式.

(1)若从10月10日0:00开始计算时间,选用一个三角函数来近似描述该港口的水深和时间之间的函数关系.

(2)10月10日17:00该港口水深约为多少?(精确到

(3)10月10日这一天该港口共有多长时间水深低于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种产品的质量以其质量指标值衡量,并依据质量指标值划分等极如下表:

质量指标值m

m<185

185≤m<205

m≥205

等级

三等品

二等品

一等品

从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:

(Ⅰ)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品90%”的规定?
(Ⅱ)在样本中,按产品等极用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;
(III)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值X近似满足X~N(218,140}),则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为落实国家“精准扶贫”政策,让市民吃上放心蔬菜,某企业于2017年在其扶贫基地投入100万元研发资金,用于蔬菜的种植及开发,并计划今后十年内在此基础上,每年投入的资金比上一年增长

(1)写出第年(2018年为第一年)该企业投入的资金数(万元)与的函数关系式,并指出函数的定义域

(2)该企业从第几年开始(2018年为第一年),每年投入的资金数将超过200万元?(参考数据)

查看答案和解析>>

同步练习册答案