精英家教网 > 高中数学 > 题目详情
(本小题满分12分)如图,在中,上的高,沿折起,使 。
(Ⅰ)证明:平面ADB  ⊥平面BDC;
(Ⅱ)设E为BC的中点,求AE与DB夹角的余弦值。
(Ⅰ)见解析;(Ⅱ)>=
此题主要考查面面垂直和异面直线夹角公式的求法,第二问解题的关键是作出辅助线,此题是一道中档题,也是高考必考题;(1)已知在△ABC中,AD是BC上的高,沿AD把△ABC折起,使∠BDC=60°,可得AD⊥DC,AD⊥DB,根据面面垂直的判定定理进行求解;
(2)作辅助线,取DC中点F,连接EF,则EF∥BD,可得∠AEF为异面直线AE与BD所成的角,再根据余弦定理和向量公式进行求解;
解(Ⅰ)∵折起前AD是BC边上的高,
∴ 当Δ ABD折起后,AD⊥DC,AD⊥DB,又DBDC=D,
∴AD⊥平面BDC,∵AD 平面平面BDC.平面ABD平面BDC。----4分
(Ⅱ)由∠ BDC=及(Ⅰ)知DA,DB,DC两两垂直,不防设=1,以D为坐标原点,以所在直线轴建立如图所示的空间直角坐标系,

易得D(0,0,0),B(1,0,0),C(0,3,0),A(0,0,),E(,0),
==(1,0,0,),
夹角的余弦值为
>=
.--------12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图已知:菱形所在平面与直角梯形ABCD所在平面互相垂直,分别是线段的中点. 

(1)求证:平面平面;
(2)试问在线段上是否存在点,使得平面,若存在,求的长并证明;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如右图,在四棱锥中,底面为平行四边形,中点,平面中点.
(1)证明://平面
(2)证明:平面
(3)求直线与平面所成角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(13分)如图,在边长为2的菱形中,的中点.(Ⅰ)求证:平面 ;
(Ⅱ)若,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)如图,分别是正三棱柱的棱的中点,且棱.

(Ⅰ)求证:平面
(Ⅱ)在棱上是否存在一点,使二面角的大小为,若存在,求的长;若不存在,说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,直线PA垂直于圆O所在的平面,内接于圆O,且AB为圆O的直径,点M为线段PB的中点.现有以下命题:①;②;③点A到平面PBC距离就是△PAC的PC边上的高.④二面角P-BC-A大小不可能为450,其中真命题的个数为 (   )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

关于直线与平面,有以下四个命题:
① 若,则
② 若,则
③若,则
④ 若,则
其中正确命题的序号是        .(把你认为正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

将边长为2,一个内角为的菱形沿较短对角线折成四面体,点
 分别为的中点,则下列命题中正确的是                   。
;②;③有最大值,无最小值;
④当四面体的体积最大时,; ⑤垂直于截面.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知是不同的直线,是不同的平面,若①,则其中能使的充分条件的个数为(    )
A.0个B.1个C.2个D.3个

查看答案和解析>>

同步练习册答案