精英家教网 > 高中数学 > 题目详情
16.已知f(x)=log3($\sqrt{{x}^{2}+1}$-x)+(a+3)x+19,f(10)=8,则f(-10)的值为(  )
A.10B.19C.20D.30

分析 由已知中f(x)=log3($\sqrt{{x}^{2}+1}$-x)+(a+3)x+19,可得f(x)+f(-x)=38,

解答 解:∵f(x)=log3($\sqrt{{x}^{2}+1}$-x)+(a+3)x+19,
∴f(-x)=log3($\sqrt{{x}^{2}+1}$+x)-(a+3)x+19,
∴f(x)+f(-x)=38,
∵f(10)=8,
∴f(-10)=30,
故选:D

点评 本题考查的知识点是抽象函数及其应用,函数求值,根据已知得到f(x)+f(-x)=38是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.函数$y=\sqrt{{{log}_2}(x-3)}$的定义域是(  )
A.(3,+∞)B.(3,4]C.(4,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.同时抛掷两个骰子(各个面上分别标有数字1,2,3,4,5,6),计算:
(1)向上的数相同的概率.
(2)向上的数之积为偶数的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x2-1)=logm$\frac{x^2}{{2-{x^2}}}$.
(1)求f(x)的解析式并判断f(x)的奇偶性;
(2)解关于 x的不等式 f(x)≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=sin(2x+$\frac{π}{4}$)+1.
(1)用“五点法”作出f(x)在$x∈[-\frac{π}{8},\frac{7π}{8}]$上的简图;
(2)写出f(x)的对称中心以及单调递增区间;
(3)求f(x)的最大值以及取得最大值时x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若函数f(x)满足f(3x+2)=9x+8,则f(x)的解析式是(  )
A.f(x)=9x+8B.f(x)=3x+2
C.f(x)=-3x-4D.f(x)=3x+2或f(x)=-3x-4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知直线l过点(3,2),且与两条坐标轴围成一个等腰直角三角形,则直线l的方程为x-y-1=0或x+y-5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.某工厂第三年的产量比第一年的产量增加20%,若每年的平均增长率相同(设为x),则以下结论正确的是(  )
A.x=10%B.x<10%
C.x>10%D.x的大小由第一年的产量决定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|(x+1)(x-2)<0},非空集合B={x|2a<x<6},则“A∩B=∅”的充分不必要条件可以是(  )
A.-1<a<2B.1≤a<3C.a>0D.1<a<3

查看答案和解析>>

同步练习册答案