精英家教网 > 高中数学 > 题目详情

 给出下列四个命题:

(1)方程表示双曲线的一部分;

(2)动点到两个定点的距离之和为定长,则动点的轨迹为椭圆;

(3)动点与点的距离比它到直线的距离小1的轨迹方程是

(4)若双曲线的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点在“上”区域内,则双曲线的离心率的取值范围是.其中所有正确命题的序号是             

 

【答案】

(1)(3)(4)

【解析】

试题分析:对于命题1,由于方程两边平方得到为双曲线的方程,因此可知表示的为双曲线的一部分,因此正确,命题2,当定值为两定点的距离时,轨迹不是椭圆而是一条线段,因此错误,

命题3,动点与点的距离比它到直线的距离小1的轨迹方程转化为动点与点的距离比它到直线y=2的距离相等,因此可知其方程为;正确。

命题4,若双曲线的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点在“上”区域内,则说明了渐近线 斜率小于2,则可知双曲线的离心率的取值范围是,故正确的序号为(1)(3)(4)。

考点:本试题考查了轨迹方程的知识。

点评:解决该是的关键是理解圆锥曲线的定义,同时要准确的理解定义,以及其性质与方程之间的关系,对于轨迹方程的求解,一般先考虑运用定义法,然后考虑别的求解方法,属于中档题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

12、已知a、b是两条不重合的直线,α、β、γ是三个两两不重合的平面,给出下列四个命题:
①若a⊥α,a⊥β,则α∥β;
②若α⊥γ,β⊥γ,则α∥β;
③若α∥β,a?α,b?β,则a∥b;
④若α∥β,α∩γ=a,β∩γ=b,则a∥b.
其中正确命题的序号有
①④

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=
1
x
的单调减区间是(-∞,0)∪(0,+∞);
②函数y=x2-4x+6,当x∈[1,4]时,函数的值域为[3,6];
③函数y=3(x-1)2的图象可由y=3x2的图象向右平移1个单位得到;
④若函数f(x)的定义域为[0,2],则函数f(2x)的定义域为[0,1];
⑤若A={s|s=x2+1},B={y|x=
y-1
}
,则A∩B=A.
其中正确命题的序号是
③④⑤
③④⑤
.(填上所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

将边长为2,锐角为60°的菱形ABCD沿较短对角线BD折成二面角A-BD-C,点E,F分别为AC,BD的中点,给出下列四个命题:
①EF∥AB;②直线EF是异面直线AC与BD的公垂线;③当二面角A-BD-C是直二面角时,AC与BD间的距离为
6
2
;④AC垂直于截面BDE.
其中正确的是
②③④
②③④
(将正确命题的序号全填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题,其中正确的命题的个数为(  )
①命题“?x0∈R,2x0≤0”的否定是“?x∈R,2x>0”;
log2sin
π
12
+log2cos
π
12
=-2;
③函数y=tan
x
2
的对称中心为(kπ,0),k∈Z;
④[cos(3-2x)]=-2sin(3-2x)

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①函数y=ax(a>0且a≠1)与函数y=logaax(a>0且a≠1)的定义域相同;
②函数y=x3与y=3x的值域相同;
③函数y=
1
2
+
1
2x-1
y=
(1+2x)2
x•2x
都是奇函数;
④函数y=(x-1)2与y=2x-1在区间[0,+∞)上都是增函数,其中正确命题的序号是(  )

查看答案和解析>>

同步练习册答案