设函数f(x)的定义域是(-∞,+∞),并且满足条件:存在x1≠x2,使得f(x1)≠f(x2),又对任意实数x、y,f(x+y)=f(x)f(y)成立.
证明:(1)f(0)=1;
(2)f(x)>0对任意x成立.
科目:高中数学 来源: 题型:
(09年东城区示范校质检一理)(14分)
设函数f(x)是定义在上的奇函数,当时, (a为实数).
(Ⅰ)求当时,f(x)的解析式;
(Ⅱ)若上是增函数,求a的取值范围;
(Ⅲ)是否存在a,使得当时,f(x)有最大值-6.
查看答案和解析>>
科目:高中数学 来源:2008年普通高等学校招生全国统一考试理科数学(上海卷) 题型:填空题
设函数f(x)是定义在R上的奇函数,若当x∈(0,+∞)时,f(x)=lg x,则满足f(x)>0
的x的取值范围是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com