精英家教网 > 高中数学 > 题目详情

【题目】若x,y满足约束条件 ,且向量 =(3,2), =(x,y),则 的取值范围(
A.[ ,5]
B.[ ,5]
C.[ ,4]
D.[ ,4]

【答案】A
【解析】解:∵向量 =(3,2), =(x,y), ∴ =3x+2y,
设z=3x+2y,
作出不等式组对于的平面区域如图:
由z=3x+2y,则y=
平移直线y= ,由图象可知当直线y=
经过点B时,直线y= 的截距最大,此时z最大,
,解得 ,即B(1,1),
此时zmax=3×1+2×1=5,
经过点A时,直线y= 的截距最小,此时z最小,
,解得 ,即A( ),
此时zmin=3× +2× =
≤z≤5
故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在△ABC中,内角A,B,C对边的边长分别是a,b,c,已知c=2,C= . (Ⅰ)若△ABC的面积等于 ,求a,b;
(Ⅱ)若sinC+sin(B﹣A)=2sin2A,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】当x∈[﹣2,1]时,不等式ax3﹣x2+4x+3≥0恒成立,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A,B,C为△ABC的三个内角,且其对边分别为a,b,c,若c2+b2+cb=a2
(1)求A;
(2)若a=2 ,b+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥D﹣ABC中,已知△BCD是正三角形,AB⊥平面BCD,AB=BC=a,E为BC点,F棱AC上,且AF=3FC.

(1)求三棱锥D﹣ABC的体积;
(2)求证:AC⊥平面DEF;
(3)若M为DB中点,N在棱AC上,且CN= CA,求证:MN∥平面DEF.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)当 恒成立,求实数的取值范围.

(2)设上有两个极值点.

(A)求实数的取值范围;

(B)求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,( ).

(1)讨论函数上零点的个数;

(2)若有两个不同的零点 ,求证: .

(参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆x2+y2=4上一定点A(2,0),B(1,1)为圆内一点,P,Q为圆上的动点.

(1)求线段AP中点的轨迹方程;
(2)若∠PBQ=90°,求线段PQ中点的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知单调递增的等差数列{an},满足|a10a11|>a10a11 , 且a102<a112 , Sn为其前n项和,则(
A.a8+a12>0
B.S1 , S2 , …S19都小于零,S10为Sn的最小值
C.a8+a13<0
D.S1 , S2 , …S20都小于零,S10为Sn的最小值

查看答案和解析>>

同步练习册答案